首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.  相似文献   

2.
Aspartic proteinases are produced in the human body by a variety of cells. Some of these proteins, examples of which are pepsin, gastricsin, and renin, are secreted and exert their effects in the extracellular spaces. Cathepsin D and cathepsin E on the other hand are intracellular enzymes. The least characterized of the human aspartic proteinases is cathepsin E. Presented here are results of studies designed to characterize the binding specificities in the active site of human cathepsin E with comparison to othermechanistically similar enzymes. A peptide series based on Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu was generatedto elucidate the specificity in the individual binding pockets with systematic substitutions in the P5? P2 and P2′-P3′ based on charge, hydrophobicity, and hydrogen bonding. Also, to explore the S2 binding preferences, asecond series of peptides based on Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu was generated with systematic replacements in the P2 position. Kinetic parameters were determined forboth sets of peptides. The results were correlated to a rule-based structural model of human cathepsin E, constructed on the known three-dimensional structures of several highly homologous aspartic proteinases; porcine pepsin, bovine chymosin, yeast proteinase A, human cathepsin D, andmouse and human renin. Important specificity-determining interactions were found in the S3 (Glu13) and S2 (Thr-222, Gln-287, Leu-289, Ile-300)subsites. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The family of aspartic proteinases includes several human enzymes that may play roles in both physiological and pathophysiological processes. The human lysosomal aspartic proteinase cathepsin D is thought to function in the normal degradation of intracellular and endocytosed proteins but has also emerged as a prognostic indicator of breast tumor invasiveness. Presented here are results from a continuing effort to elucidate the factors that contribute to specificity of ligand binding at individual subsites within the cathepsin D active site. The synthetic peptide Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu has proven to be an excellent chromogenic substrate for cathepsin D yielding a value of kcat/Km = 0.92 x 10(-6) s-1 M-1 for enzyme isolated from human placenta. In contrast, the peptide Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu and all derivatives with Ala-Lys in the P3-P2 positions are either not cleaved at all or cleaved with extremely poor efficiency. To explore the binding requirements of the S3 and S2 subsites of cathepsin D, a series of synthetic peptides was prepared with systematic replacements at the P2 position fixing either Ile or Ala in P3. Kinetic parameters were determined using both human placenta cathepsin D and recombinant human fibroblast cathepsin D expressed in Escherichia coli. A rule-based structural model of human cathepsin D, constructed on the basis of known three-dimensional structures of other aspartic proteinases, was utilized in an effort to rationalize the observed substrate selectivity.  相似文献   

4.
Li W  Tang Y  Liu H  Cheng J  Zhu W  Jiang H 《Proteins》2008,71(2):938-949
Cytochrome P450 (P450) 2J2 catalyzes epoxidation of arachidonic acid to eicosatrienoic acids, which are related to a variety of diseases such as coronary artery disease, hypertension, and carcinogenesis. Recent experimental data also suggest that P450 2J2 could be a novel biomarker and a potential target for cancer therapy. However, the active site topology and substrate specificity of this enzyme remain unclear. In this study, a three-dimensional model of human P450 2J2 was first constructed on the basis of the crystal structure of human P450 2C9 in complex with a substrate using homology modeling method, and refined by molecular dynamics simulation. Flexible docking approaches were then employed to dock four ligands into the active site of P450 2J2 in order to probe the ligand-binding modes. By analyzing the results, active site architecture and certain key residues responsible for substrate specificity were identified on the enzyme, which might be very helpful for understanding the enzyme's biological role and providing insights for designing novel inhibitors of P450 2J2.  相似文献   

5.
Nonribosomal peptide synthetases (NRPSs) synthesize a diverse array of bioactive small peptides, many of which are used in medicine. There is considerable interest in predicting NRPS substrate specificity in order to facilitate investigation of the many “cryptic” NRPS genes that have not been linked to any known product. However, the current sequence similarity‐based methods are unable to produce reliable predictions when there is a lack of prior specificity data, which is a particular problem for fungal NRPSs. We conducted virtual screening on the specificity‐determining domain of NRPSs, the adenylation domain, and found that virtual screening using experimentally determined structures results in good enrichment of the cognate substrate. Our results indicate that the conformation of the adenylation domain and in particular the conformation of a key conserved aromatic residue is important in determining the success of the virtual screening. When homology models of NRPS adenylation domains of known specificity, rather than experimentally determined structures, were built and used for virtual screening, good enrichment of the cognate substrate was also achieved in many cases. However, the accuracy of the models was key to the reliability of the predictions and there was a large variation in the results when different models of the same domain were used. This virtual screening approach is promising and is able to produce enrichment of the cognate substrates in many cases, but improvements in building and assessing homology models are required before the approach can be reliably applied to these models. Proteins 2015; 83:2052–2066. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
We have undertaken the modeling of substrate-bound structures of angiogenin. In our recent study, we modeled the dinucleotide ligand binding to human angiogenin. In the present study, the substrates CpG, UpG, and CpA were docked onto bovine angiogenin. This was achieved by overcoming the problem of an obstruction to the B1 site by the C-terminus and identifying residues that bind to the second base. The modeled complexes retain biochemically important interactions. The docked models were subjected to 1 ns of molecular dynamics, and structures from the simulation were refined by using simulated annealing. Our models explained the enzyme's specificity for both B1 and B2 bases as observed experimentally. The nature of binding of the dinucleotide substrate was compared with that of the mononucleotide product. The models of these complexes were also compared with those obtained earlier with human angiogenin. On the basis of the simulations and annealed structures, we came up with a consensus topology of dinucleotide ligands that binds to human and bovine angiogenins. This dinucleotide conformation can serve as a starting model for ligand-bound complex structures for RNase A family of proteins. We demonstrated this capability by generating the complex structure of CpA bound to eosinophil-derived neurotoxin (EDN) by fitting the consensus topology of CpA to the crystal structure of native EDN.  相似文献   

7.
8.
Kumar S 《Bioinformation》2011,7(4):207-210
Cytochrome P450s are superfamily of heme proteins which generally monooxygenate hydrophobic compounds. The human cytochrome P450 4F22 (CYP4F22) was categorized into "orphan" CYPs because of its unknown function. CYP4F22 is a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4F22 remain unclear. In this study, a three-dimensional model of human P450 4F22 was constructed by comparative modeling using Modeller 9v5. The resulting model was refined by energy minimization subjected to the quality assessment from both geometric and energetic aspects and was found to be of reasonable quality. Docking approach was employed to dock arachidonic acid into the active site of CYP4F22 in order to probe the ligand-binding modes. As a result, several key residues were identified to be responsible for the binding of arachidonic acid with CYP4F22. These findings provide useful information for understanding the biological roles of CYP4F22 and structure-based drug design.  相似文献   

9.
This investigation was performed to assess the importance of interaction in the binding of blockers to KCNQ1 potassium using molecular modeling. This work could be considered made up by three main steps: (1) the construction of closed-state structure of KCNQ1 through homology modeling; (2) the automated docking of three blockers: IKS-142, L-735821, and BMS-IKS, using DOCK program; (3) the generation and validation of pharmacophore for KCNQ1 ligands using Catalyst/HypoGen. The obtained results highlight the hydrophobic or aromatic residues involved in S6 transmembrane domain and the base of the pore helix of KCNQ1, confirming the mutagenesis data and pharmacophore model, and giving new suggestions for the rational design of novel KCNQ1 ligands.  相似文献   

10.
The active sites and substrate bindings of Rhizobium trifolii molonyl-CoA synthetase (MCS) catalyzing the malonyl-CoA formation from malonate and CoA have been determined based on NMR spectroscopy, site-directed mutagenesis, and comparative modeling methods. The MCS-bound conformation of malonyl-CoA was determined from two-dimensional-transferred nuclear Overhauser effect spectroscopy data. MCS protein folds into two structural domains and consists of 16 alpha-helices, 24 beta-strands, and several long loops. The core active site was determined as a wide cleft close to the end of the small C-terminal domain. The catalytic substrate malonate is placed between ATP and His206 in the MCS enzyme, supporting His206 in its catalytic role as it generates reaction intermediate, malonyl-AMP. These findings are strongly supported by previous biochemical data, as well as by the site-directed mutagenesis data reported here. This structure reveals the biochemical role as well as the substrate specificity that conservative residues of adenylate-forming enzymes have.  相似文献   

11.
The specific insertion of a divalent metal ion into tetrapyrrole macrocycles is catalyzed by a group of enzymes called chelatases. Distortion of the tetrapyrrole has been proposed to be an important component of the mechanism of metallation. We present the structures of two different inhibitor complexes: (1) N-methylmesoporphyrin (N-MeMP) with the His183Ala variant of Bacillus subtilis ferrochelatase; (2) the wild-type form of the same enzyme with deuteroporphyrin IX 2,4-disulfonic acid dihydrochloride (dSDP). Analysis of the structures showed that only one N-MeMP isomer out of the eight possible was bound to the protein and it was different from the isomer that was earlier found to bind to the wild-type enzyme. A comparison of the distortion of this porphyrin with other porphyrin complexes of ferrochelatase and a catalytic antibody with ferrochelatase activity using normal-coordinate structural decomposition reveals that certain types of distortion are predominant in all these complexes. On the other hand, dSDP, which binds closer to the protein surface compared to N-MeMP, does not undergo any distortion upon binding to the protein, underscoring that the position of the porphyrin within the active site pocket is crucial for generating the distortion required for metal insertion. In addition, in contrast to the wild-type enzyme, Cu2+-soaking of the His183Ala variant complex did not show any traces of porphyrin metallation. Collectively, these results provide new insights into the role of the active site residues of ferrochelatase in controlling stereospecificity, distortion and metallation.  相似文献   

12.
Cellodextrin phosphorylase from Clostridium stercorarium has been recombinantly expressed in Escherichia coli for the first time. Kinetic characterization of the purified enzyme has revealed that aryl and alkyl β-glucosides can be efficiently glycosylated, an activity that has not yet been described for this enzyme class. To obtain a better understanding of the factors that determine the enzyme's specificity, homology modeling and ligand docking were applied. Residue W168 has been found to form a hydrophobic stacking interaction with the substrate in subsite +2, and its importance has been examined by means of site-directed mutagenesis. The mutant W168A retains about half of its catalytic activity, indicating that other residues also contribute to the binding affinity of subsite +2. Finally, residue D474 has been identified as the catalytic acid, interacting with the glycosidic oxygen between subsites -1 and +1. Mutating this residue results in complete loss of activity. These results, for the first time, provide an insight in the enzyme-substrate interactions that determine the activity and specificity of cellodextrin phosphorylases.  相似文献   

13.
Recent trends in new drug discovery of anticancer drugs have made oncologists more aware of the fact that the new drug discovery must target the developing mechanism of tumorigenesis to improve the therapeutic efficacy of antineoplastic drugs. The drugs designed are expected to have high affinity towards the novel targets selectively. Current research highlights overexpression of CYP450s, particularly cytochrome P450 1A1 (CYP1A1), in tumour cells, representing a novel target for anticancer therapy. However, the CYP1 family is identified as posing significant problems in selectivity of anticancer molecules towards CYP1A1. Three members have been identified in the human CYP1 family: CYP1A1, CYP1A2 and CYP1B1. Although sequences of the three isoform have high sequence identity, they have distinct substrate specificities. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics, design novel antitumour compounds that could be specifically metabolized by only CYP1A1 to mediate their antitumour activity and elucidate the reasons for differences in substrate specificity profile among the three proteins. In the present study, we employed a combination of computational methodologies: molecular docking and molecular dynamics simulations. We utilized eight substrates for elucidating the difference in substrate specificity of the three isoforms. Lastly, we conclude that the substrate specificity of a particular substrate depends upon the type of the active site residues, the dynamic motions in the protein structure upon ligand binding and the physico‐chemical characteristics of a particular ligand. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Protein phosphatase 5 (PP5), mainly localized in human brain, can dephosphorylate tau protein whose high level of phosphorylation is related to Alzheimer's disease. Similar to other protein phosphatases, PP5 has a conserved motif in the catalytic domain that contains two binding sites for manganese (Mn2+) ions. Structural data indicate that two active site water molecules, one bridging the two Mn2+ ions and the other terminally coordinated with one of the Mn2+ ions (Mn1), are involved in catalysis. Recently, a density functional theory study revealed that the two water molecules can be both deprotonated to keep a neutral active site for catalysis. The theoretical study gives us an insight into the catalytic mechanism of PP5, but the knowledge of how the deprotonation states of the two water molecules affect the binding of PP5 with its substrate is still lacking. To approach this problem, molecular dynamics simulations were performed to model the four possible deprotonation states. Through structural, dynamical and energetic analyses, the results demonstrate that the deprotonation states of the two water molecules affect the structure of the active site including the distance between the two Mn2+ ions and their coordination, impact the interaction energy of residues R275, R400 and H304 which directly interact with the substrate phosphoserine, and mediate the dynamics of helix αJ which is involved in regulation of the enzyme's activity. Furthermore, the deprotonation state that is preferable for PP5 binding of its substrate has been identified. These findings could provide new design strategy for PP5 inhibitor.  相似文献   

15.
Díaz N  Suárez D 《Proteins》2008,72(1):50-61
Herein we use different computational methods to study the structure and energetic stability of the catalytic domain of the active MMP-2 enzyme considering two different orientations of its N-terminal coil. The first orientation is largely solvent accessible and corresponds to that observed in the 1CK7 crystal structure of the proenzyme. In the second orientation, the N-terminal coil is packed against the Omega-loop and the alpha3-helix of the MMP-2 enzyme likewise in the so-called "superactivated" form of other MMPs. Binding to the MMP-2 catalytic domain of a short peptide substrate, which mimics the sequence of the alpha1 chain of collagen type I, is also examined considering again the two configurations of the N-terminal coil. All these MMP-2 models are subject to 20 ns molecular dynamics (MD) simulations followed by MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) calculations. The positioning of the N-terminal coil in the "superactivated" form is found to be energetically favored for the MMP-2 enzyme. Moreover, this configuration of the N-terminal moiety can facilitate the binding of peptide substrates. Globally, the results obtained in this study could be relevant for the structural-based design of specific MMP inhibitors.  相似文献   

16.
Cartilage degradation in rheumatoid arthritis is mediated principally by the collagenases and gelatinases. Gelatinase B (also called matrix metalloproteinase 9 – MMP-9), is a valid target molecule which is known to participate in cartilage degradation as well as angiogenesis associated with the disease and inhibition of its activity shall prevent cartilage damage and angiogenesis. The focus of this study is to investigate the possibilities of MMP-9 inhibition by flavonol class of bioflavonoids by studying their crucial binding interactions at the active site of MMP 9 using molecular docking (Glide XP and QPLD) and further improvisation by post-docking MM-GBSA and molecular dynamic (MD) simulations. The results show that flavonols can convincingly bind to active site of MMP-9 as demonstrated by their stable interactions at the S1′ specificity pocket and favourable binding energies. Gossypin has emerged as a promising candidate with a docking score of ?14.618 kcal/mol, binding energy of ?79.97 kcal/mol and a stable MD pattern over 15 ns. In addition, interaction mechanisms with respect to catalytic site zinc are also discussed. Further, the drug-like characters of the ligands were also analysed using ADME analysis.  相似文献   

17.
The interaction of pepsin with chlorogenic acid (CHA) was investigated using fluorescence, UV/vis spectroscopy and molecular modeling methods. Stern–Volmer analysis indicated that the fluorescence quenching of pepsin by CHA resulted from a static mechanism, and the binding constant was 1.1846 × 105 and 1.1587 × 105 L/mol at 288 and 310 K, respectively. The distance between donor (pepsin) and acceptor (CHA) was calculated to be 2.39 nm and the number of binding sites for CHA binding on pepsin was ~ 1. The results of synchronous fluorescence and three‐dimensional fluorescence showed that binding of CHA to pepsin could induce conformational changes in pepsin. Molecular docking experiments found that CHA bonded with pepsin in the area of the hydrophobic cavity with Van der Waals' forces or hydrogen bonding interaction, which were consistent with the results obtained from the thermodynamic parameter analysis. Furthermore, the binding of CHA can inhibit pepsin activity in vitro. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Despite extensive primary sequence diversity, crystal structures of several bacterial cytochrome P450 monooxygenases (P450s) and a single eukaryotic P450 indicate that these enzymes share a structural core of alpha-helices and beta-sheets and vary in the loop regions contacting individual substrates. To determine the extent to which individual structural features are conserved among divergent P450s existing in a single biosynthetic pathway, we have modeled the structures of four highly divergent P450s (CYP73A5, CYP84A1, CYP75B1, CYP98A3) in the Arabidopsis phenylpropanoid pathway synthesizing lignins, flavonoids and anthocyanins. Analysis of these models has indicated that, despite primary sequence identities as low as 13%, the structural cores and several loop regions of these P450s are highly conserved. Substrate docking indicated that all four enzymes employ a common strategy to identify their substrates in that their cinnamate-derived substrates align along helix I with their aromatic ring positioned towards the C-terminus of this helix and their aliphatic tails positioned towards the N-terminus. Further similarity was observed in the way the substrates contact the consensus P450 substrate recognition sites (SRS). Residues predicted to contact the aromatic ring region exist in SRS5, SRS6 and the C-terminal portion of SRS4 and residues contacting the distal end of each substrate exist in SRS1, SRS2 and the N-terminal portion of SRS4. Alignments of the regions contacting the aromatic ring region indicate that SRS4, SRS5 and SRS6 share higher degrees of sequence conservation than found in SRS1, SRS2 or the full-length protein.  相似文献   

19.
sPLA2 is released under inflammatory conditions from neutrophils, basophils and T-cells. They cleave the cellular phospholipids leading to the release of arachidonic acid and there by provide intermediates for biosynthesis of inflammatory mediators. The focus of this study is on the interaction of hesperidin, a natural flavonoid with Group IB, IIA, and V and X isozymes of sPLA2. Affinity of hesperidin towards PLA2 isozymes was analyzed through enzymatic studies and molecular modeling. The experiments showed that hesperidin competitively inhibited PLA2 with IC50 of 5.1?µM. Molecular modeling studies revealed the association of hesperidin with the docking scores ?6.90, ?9.53, ?5.63 and ?8.29?kcal for isozymes Group IB, IIA, V and X of PLA2 respectively. Their binding energy values were calculated as ?20.25, ?21.63, ?21.66 and ?33.43?kcal for the Group IB, IIA, V and X respectively. Structural model for Group V was made by homology modeling since no structural coordinates were available. Molecular dynamics studies were carried out to evaluate the structural stability of protein ligand complex. The analyses showed that hesperidin blocked the entry of the substrate to the active site of PLA2 and it was indifferent to the differences of the isozymes. Hence, hesperidin might serve as lead for designing highly specific anti-inflammatory drugs directed to the PLA2 isozyme specific to various diseases, with IC50 value of therapeutic significance.  相似文献   

20.
We have theoretically and experimentally studied the binding of two different ligands to wild-type ribonuclease T1 (RNT1) and to a mutant of RNT1 with Glu-46 replaced by Gln. The binding of the natural substrate 3′-GMP has been compared with the binding of a fluorescent probe, 2-aminopurine 3′-monophosphate (2AP), and relative free energies of binding of these ligands to the mutant and the wild-type (wt) enzyme have been calculated by free energy perturbation methods. The free energy perturbations predict that the mutant RNT1-Gln-46 binds 2AP better than 3′GMP, in agreement with experiments on dinucleotides. Four free energy perturbations, forming a closed loop, have been performed to allow the detection of systematic errors in the simulation procedure. Because of the larger number of atoms involved, it was necessary to use a much longer simulation time for the change in the protein, i.e., the perturbation from Glu to Gln, than in the perturbation from 3′-GMP to 2AP. Finally the structure of the binding site is analyzed for understanding differences in catalytic speed and binding strength. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号