首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Glycine-accumulating mutants of barley (Hordeum vulgare L.) and Amaranthus edulis (Speg.), which lack the ability to decarboxylate glycine by glycine decarboxylase (GDC; EC 2.1.2.10), were used to study the significance of an alternative photorespiratory pathway of serine formation. In the normal photorespiratory pathway, 5,10-methylenetetrahydrofolate is formed in the reaction catalysed by GDC and transferred to serine by serine hydroxymethyltransferase. In an alternative pathway, glyoxylate could be decarboxylated to formate and formate could be converted into 5,10-methylenetetrahydrofolate in the C1-tetrahydrofolate synthase pathway. In contrast to wild-type plants, the mutants showed a light-dependent accumulation of glyoxylate and formate, which was suppressed by elevated (0.7%) CO2 concentrations. After growth in air, the activity and amount of 10-formyltetrahydrofolate synthetase (FTHF synthetase; EC 6.3.4.4), the first enzyme of the conversion of formate into 5,10-methylenetetrahydrofolate, were increased in the mutants compared to the wild types. A similar increase in FTHF synthetase could be induced by incubating leaves of wild-type plants with glycine under illumination, but not in the dark. Experiments with 14C showed that the barley mutants incorporated [14C]formate and [2-14C]glycollate into serine. Together, the accumulation of glyoxylate and formate under photorespiratory conditions, the increase in FTHF synthetase and the ability to utilise formate and glycollate for the formation of serine indicate that the mutants are able partially to compensate for the lack of GDC activity by bypassing the normal photorespiratory pathway. Received: 14 August 1998 / Accepted: 30 September 1998  相似文献   

4.
5.
V Prabhu  K B Chatson  G D Abrams    J King 《Plant physiology》1996,112(1):207-216
In C3 plants, serine synthesis is associated with photorespiratory glycine metabolism involving the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC) and serine hydroxymethyl transferase (SHMT). Alternatively, THF-dependent serine synthesis can occur via the C1-THF synthase/SHMT pathway. We used 13C nuclear magnetic resonance to examine serine biosynthesis by these two pathways in Arabidopsis thaliana (L.) Heynh. Columbia wild type. We confirmed the tight coupling of the GDC/ SHMT system and observed directly in a higher plant the flux of formate through the C1-THF synthase/SHMT system. The accumulation of 13C-enriched serine over 24 h from the GDC/SHMT activities was 4-fold greater than that from C1-THF synthase/SHMT activities. Our experiments strongly suggest that the two pathways operate independently in Arabidopsis. Plants exposed to methotrexate and sulfanilamide, powerful inhibitors of THF biosynthesis, reduced serine synthesis by both pathways. The results suggest that continuous supply of THF is essential to maintain high rates of serine metabolism. Nuclear magnetic resonance is a powerful tool for the examination of THF-mediated metabolism in its natural cellular environment.  相似文献   

6.
Yoshimura Y  Kubota F  Ueno O 《Planta》2004,220(2):307-317
In C4 plants, photorespiration is decreased relative to C3 plants. However, it remains unclear how much photorespiratory capacity C4 leaf tissues actually have. We thoroughly investigated the quantitative distribution of photorespiratory organelles and the immunogold localization of the P protein of glycine decarboxylase (GDC) in mesophyll (M) and bundle sheath (BS) cells of various C4 grass species. Specific differences occurred in the proportions of mitochondria and peroxisomes in the BS cells (relative to the M cells) in photosynthetic tissues surrounding a vein: lower in the NADP-malic enzyme (NADP-ME) species having poorly formed grana in the BS chloroplasts, and higher in the NAD-malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) species having well developed grana. In all C4 species, GDC was localized mainly in the BS mitochondria. When the total amounts of GDC in the BS mitochondria per unit leaf width were estimated from the immunogold labeling density and the quantity of mitochondria, the BSs of NADP-ME species contained less GDC than those of NAD-ME or PCK species. This trend was also verified by immunoblot analysis of leaf soluble protein. There was a high positive correlation between the degree of granal development (granal index) in the BS chloroplasts and the total amount of GDC in the BS mitochondria. The variations in the structural and biochemical features involved in photorespiration found among C4 species might reflect differences in the O2/CO2 partial pressure and in the potential photorespiratory capacity of the BS cells.Abbreviations BS Bundle sheath - GDC Glycine decarboxylase - M Mesophyll - NAD-ME NAD-malic enzyme - NADP-ME NADP-malic enzyme - PCK Phosphoenolpyruvate carboxykinase  相似文献   

7.
The mitochondrial multienzyme glycine decarboxylase (GDC) catalyzes the tetrahydrofolate-dependent catabolism of glycine to 5,10-methylene-tetrahydrofolate and the side products NADH, CO(2), and NH(3). This reaction forms part of the photorespiratory cycle and contributes to one-carbon metabolism. While the important role of GDC for these two metabolic pathways is well established, the existence of bypassing reactions has also been suggested. Therefore, it is not clear to what extent GDC is obligatory for these processes. Here, we report on features of individual and combined T-DNA insertion mutants for one of the GDC subunits, P protein, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana). The individual knockout of either of these two genes does not significantly alter metabolism and photosynthetic performance indicating functional redundancy. In contrast, the double mutant does not develop beyond the cotyledon stage in air enriched with 0.9% CO(2). Rosette leaves do not appear and the seedlings do not survive for longer than about 3 to 4 weeks under these nonphotorespiratory conditions. This feature distinguishes the GDC-lacking double mutant from all other known photorespiratory mutants and provides evidence for the nonreplaceable function of GDC in vital metabolic processes other than photorespiration.  相似文献   

8.
Genetic manipulation of glycine decarboxylation   总被引:15,自引:0,他引:15  
The glycine-serine interconversion, catalysed by glycine decarboxylase and serine hydroxymethyltransferase, is an important reaction of primary metabolism in all organisms including plants, by providing one-carbon units for many biosynthetic reactions. In plants, in addition, it is an integral part of the photorespiratory metabolic pathway and produces large amounts of photorespiratory CO(2) within mitochondria. Although controversial, there is significant evidence that this process, by the relocation of glycine decarboxylase within the leaves from the mesophyll to the bundle-sheath, contributed to the evolution of C(4) photosynthesis. In this review, some aspects of current knowledge about glycine decarboxylase and serine hydroxymethyltransferase and the role of these enzymes in metabolism, about the corresponding genes and their expression as well as about mutants and anti-sense plants related to these genes or processes will be summarized and discussed. From a comparison of the available information about the number and organization of GDC and SHMT genes in the genomes of Arabidopsis thaliana and Oryza sativa it appears that these and, possibly, other genes related to photorespiration, are similarly organized even in only very distantly related angiosperms.  相似文献   

9.
A mutant (LaPr 87/30) of barley (Hordeum vulgare L.) deficient in glycine decarboxylase (GDC; EC 2.1.2.10) was crossed with wild-type plants to generate heterozygous plants with reduced GDC activities. Plants of the F2 generation were grown in air and analysed for reductions in GDC proteins and GDC activity. The leaves of heterozygous plants contained reduced amounts of H-protein, and when the content of H-protein was lower than 60% of the wild-type, the P-protein was also reduced. The contents of the other two proteins of the GDC complex, T-protein and L-protein were not affected. Glycine decarboxylase activities, measured as the decarboxylation of [1-14C]glycine by intact mitochondria released from protoplasts, were between 47% and 63% of the wild-type activity in heterozygous plants and between 86% and 100% in plants with normal contents of H-protein. The enzyme activity was linearly correlated with the relative content of H-protein. Plants with reduced GDC activities developed normally and did not show major pleiotropic effects. In air, the reduction in GDC activity had no effect on the leaf metabolite content or photosynthesis, but under conditions of enhanced photorespiration (low CO2 and high light), glycine accumulated and the rates of photosynthesis decreased compared to the wild-type. The accumulation of glycine did not lead to a depletion of amino donors or to the accumulation of glyoxylate. The lower rates of photosynthesis were probably caused by an impaired recycling of carbon in the photorespiratory pathway. It is concluded that GDC has no control over CO2 assimilation under normal growth conditions, but appreciable control by GDC becomes apparent under conditions leading to higher rates of photorespiration. Received: 24 November 1996 / Accepted: 23 January 1997  相似文献   

10.
The photorespiratory Arabidopsis (Arabidopsis thaliana) mutant gld1 (now designated mtkas-1) is deficient in glycine decarboxylase (GDC) activity, but the exact nature of the genetic defect was not known. We have identified the mtkas-1 locus as gene At2g04540, which encodes beta-ketoacyl-[acyl carrier protein (ACP)] synthase (mtKAS), a key enzyme of the mitochondrial fatty acid synthetic system. One of its major products, octanoyl-ACP, is regarded as essential for the intramitochondrial lipoylation of several proteins including the H-protein subunit of GDC and the dihydrolipoamide acyltransferase (E2) subunits of two other essential multienzyme complexes, pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. This view is in conflict with the fact that the mtkas-1 mutant and two allelic T-DNA knockout mutants grow well under nonphotorespiratory conditions. Although on a very low level, the mutants show residual lipoylation of H protein, indicating that the mutation does not lead to a full functional knockout of GDC. Lipoylation of the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase E2 subunits is distinctly less reduced than that of H protein in leaves and remains unaffected from the mtKAS knockout in roots. These data suggest that mitochondrial protein lipoylation does not exclusively depend on the mtKAS pathway of lipoate biosynthesis in leaves and may occur independently of this pathway in roots.  相似文献   

11.
Genetic improvement of cell wall polymer synthesis in forest trees is one of the major goals of forest biotechnology that could possibly impact their end product utilization. Identification of genes involved in cell wall polymer biogenesis is essential for achieving this goal. Among various candidate cell wall-related genes, cellulose synthase-like D (CSLD) genes are intriguing due to their hitherto unknown functions in cell wall polymer synthesis but strong structural similarity with cellulose synthases (CesAs) involved in cellulose deposition. Little is known about CSLD genes from trees. In the present article PtrCSLD2, a first CSLD gene from an economically important tree, aspen (Populus tremuloides) is reported. PtrCSLD2 cDNA was isolated from an aspen xylem cDNA library and encodes a protein that shares 90% similarity with Arabidopsis AtCSLD3 protein involved in root hair tip growth. It is possible that xylem fibers that also grow by intrusive tip growth may need expression of PtrCSLD2 for controlling the length of xylem fibers, a wood quality trait of great economical importance. PtrCSLD2 protein has a N-terminal cysteine-rich putative zinc-binding domain; eight transmembrane domains; alternating conserved and hypervariable domains; and a processive glycosyltransferases signature, D, D, D, QXXRW; all similar to aspen CesA proteins. However, PtrCSLD2 shares only 43-48% overall identity with the known aspen CesAs suggesting its distinct functional role in cell wall polymer synthesis perhaps other than cellulose biosynthesis. Based on Southern analysis, the aspen CSLD gene family consists of at least three genes and this gene copy estimate is supported by phylogenetic analysis of available CSLDs from plants. Moreover, gene expression studies using RT-PCR and in situ mRNA hybridization showed that PtrCSLD2 is expressed at a low level in all aspen tissues examined with a slightly higher expression level in secondary cell wall-enriched aspen xylem as compared to primary cell wall enriched tissues. Together, these observations suggest that PtrCSLD2 gene may be involved in the synthesis of matrix polysaccharides that are dominant in secondary cell walls of poplar xylem. Future molecular genetic analyses will clarify the functional significance of CSLD genes in the development of woody trees.  相似文献   

12.
In this article, we have altered the levels of three different enzymes involved in the Calvin–Benson cycle and photorespiratory pathway. We have generated transgenic Arabidopsis plants with altered combinations of sedoheptulose 1,7‐bisphosphatase (SBPase), fructose 1,6‐bisphophate aldolase (FBPA) and the glycine decarboxylase‐H protein (GDC‐H) gene identified as targets to improve photosynthesis based on previous studies. Here, we show that increasing the levels of the three corresponding proteins, either independently or in combination, significantly increases the quantum efficiency of PSII. Furthermore, photosynthetic measurements demonstrated an increase in the maximum efficiency of CO2 fixation in lines over‐expressing SBPase and FBPA. Moreover, the co‐expression of GDC‐H with SBPase and FBPA resulted in a cumulative positive impact on leaf area and biomass. Finally, further analysis of transgenic lines revealed a cumulative increase of seed yield in SFH lines grown in high light. These results demonstrate the potential of multigene stacking for improving the productivity of food and energy crops.  相似文献   

13.
Kao YY  Harding SA  Tsai CJ 《Plant physiology》2002,130(2):796-807
Lignins, along with condensed tannins (CTs) and salicylate-derived phenolic glycosides, constitute potentially large phenylpropanoid carbon sinks in tissues of quaking aspen (Populus tremuloides Michx.). Metabolic commitment to each of these sinks varies during development and adaptation, and depends on L-phenylalanine ammonia-lyase (PAL), an enzyme catalyzing the deamination of L-phenylalanine to initiate phenylpropanoid metabolism. In Populus spp., PAL is encoded by multiple genes whose expression has been associated with lignification in primary and secondary tissues. We now report cloning two differentially expressed PAL cDNAs that exhibit distinct spatial associations with CT and lignin biosynthesis in developing shoot and root tissues of aspen. PtPAL1 was expressed in certain CT-accumulating, non-lignifying cells of stems, leaves, and roots, and the pattern of PtPAL1 expression varied coordinately with that of CT accumulation along the primary to secondary growth transition in stems. PtPAL2 was expressed in heavily lignified structural cells of shoots, but was also expressed in non-lignifying cells of root tips. Evidence of a role for Pt4CL2, encoding 4-coumarate:coenzyme A ligase, in determining CT sink strength was gained from cellular co-expression analysis with PAL1 and CTs, and from experiments in which leaf wounding increased PAL1 and 4CL2 expression as well as the relative allocation of carbon to CT with respect to phenolic glycoside, the dominant phenolic sink in aspen leaves. Leaf wounding also increased PAL2 and lignin pathway gene expression, but to a smaller extent. The absence of PAL2 in most CT-accumulating cells provides in situ support for the idea that PAL isoforms function in specific metabolic milieus.  相似文献   

14.
15.
16.
Potato (Solanum tuberosum L. cv. Désirée) plants with an antisense reduction in the P-protein of the glycine decarboxylase complex (GDC) were used to study the interaction between respiration and photorespiration. Mitochondria isolated from transgenic plants had a decreased capacity for glycine oxidation and glycine accumulated in the leaves. Malate consumption increased in leaves of GDC deficient plants and the capacity for malate and NADH oxidation increased in isolated mitochondria. A lower level of alternative oxidase protein and decreased partitioning of electrons to the alternative pathway was found in these plants. The adenylate status was altered in protoplasts from transgenic plants, most notably the chloroplastic ATP/ADP ratio increased. The lower capacity for photorespiration in leaves of GDC deficient plants was compensated for by increased respiratory decarboxylations in the light. This is interpreted as a decreased light suppression of the tricarboxylic acid cycle in GDC deficient plants in comparison to wild-type plants. The results support the view that respiratory decarboxylations in the light are restricted at the level of the pyruvate dehydrogenase complex and/or isocitrate dehydrogenase and that this effect is likely to be mediated by mitochondrial photorespiratory products.  相似文献   

17.
The photorespiratory pathway is comprised of enzymes localized within three distinct cellular compartments: chloroplasts, peroxisomes, and mitochondria. Photorespiratory enzymes are encoded by nuclear genes, translated in the cytosol, and targeted into these distinct subcellular compartments. One likely means by which to regulate the expression of the genes encoding photorespiratory enzymes is coordinated temporal control. We have previously shown in Arabidopsis that a circadian clock regulates the expression of the nuclear genes encoding both chloroplastic (Rubisco small subunit and Rubisco activase) and peroxisomal (catalase) components of the photorespiratory pathway. To determine whether a circadian clock also regulates the expression of genes encoding mitochondrial components of the photorespiratory pathway, we characterized a family of Arabidopsis serine hydroxymethyltransferase (SHM) genes. We examined mRNA accumulation for two of these family members, including one probable photorespiratory gene (SHM1) and a second gene expressed maximally in roots (SHM4), and show that both exhibit circadian oscillations in mRNA abundance that are in phase with those described for other photorespiratory genes. In addition, we show that SHM1 mRNA accumulates in light-grown seedlings, although this response is probably an indirect consequence of the induction of photosynthesis and photorespiration by illumination.  相似文献   

18.
Wood cells, unlike most other cells in plants, grow by a unique combination of intrusive and symplastic growth. Fibers grow in diameter by diffuse symplastic growth, but they elongate solely by intrusive apical growth penetrating the pectin-rich middle lamella that cements neighboring cells together. In contrast, vessel elements grow in diameter by a combination of intrusive and symplastic growth. We demonstrate that an abundant pectin methyl esterase (PME; EC 3.1.1.11) from wood-forming tissues of hybrid aspen (Populus tremula x tremuloides) acts as a negative regulator of both symplastic and intrusive growth of developing wood cells. When PttPME1 expression was up- and down-regulated in transgenic aspen trees, the PME activity in wood-forming tissues was correspondingly altered. PME removes methyl ester groups from homogalacturonan (HG) and transgenic trees had modified HG methylesterification patterns, as demonstrated by two-dimensional nuclear magnetic resonance and immunostaining using PAM1 and LM7 antibodies. In situ distributions of PAM1 and LM7 epitopes revealed changes in pectin methylesterification in transgenic trees that were specifically localized in expanding wood cells. The results show that en block deesterification of HG by PttPME1 inhibits both symplastic growth and intrusive growth. PttPME1 is therefore involved in mechanisms determining fiber width and length in the wood of aspen trees.  相似文献   

19.
Photorespiration makes oxygenic photosynthesis possible by scavenging 2-phosphoglycolate. Hence, compromising photorespiration impairs photosynthesis. We examined whether facilitating photorespiratory carbon flow in turn accelerates photosynthesis and found that overexpression of the H-protein of glycine decarboxylase indeed considerably enhanced net-photosynthesis and growth of Arabidopsis thaliana. At the molecular level, lower glycine levels confirmed elevated GDC activity in vivo, and lower levels of the CO2 acceptor ribulose 1,5-bisphosphate indicated higher drain from CO2 fixation. Thus, the photorespiratory enzyme glycine decarboxylase appears as an important feed-back signaller that contributes to the control of the Calvin-Benson cycle and hence carbon flow through both photosynthesis and photorespiration.  相似文献   

20.
Samuga A  Joshi CP 《Gene》2002,296(1-2):37-44
We report here the molecular cloning and characterization of a new full-length cellulose synthase (CesA) cDNA, PtrCesA2 from aspen (Populus tremuloides) trees. The predicted PtrCesA2 protein shows a high degree of identity/similarity (87%/91%) to the predicted gene product of Arabidopsis AtCesA7 gene that has been associated with secondary cell wall development. Previously, a mutation in AtCesA7 gene (irx3) was correlated with a significant decrease in the amount of cellulose synthesized (about 70%) and genetic complementation of irx3 mutant with a wild-type AtCesA7 gene restored the normal phenotype. This is the first report of a full-length AtCesA7 ortholog from any non-Arabidopsis species. Interestingly, PtrCesA2 shares only 64% identity with our earlier reported PtrCesA1 from aspen suggesting its structural distinctness from the only other known CesA member from the aspen genome. PtrCesA1 is a xylem-specific and tension stress responsive gene that is highly similar to another Arabidopsis gene, AtCesA8 which also has been associated with secondary wall development. Moreover, AtCesA7 and AtCesA8 are suggested to be part of the same cellulose synthase complex. Isolation of PtrCesA2 from a xylem library enriched in cells with active secondary wall synthesis, PtrCesA2 expression levels similar to PtrCesA1 and high similarity of PtrCesA1 and PtrCesA2 to AtCesA8 and AtCesA7, respectively, suggest that both these aspen genes might be involved in the secondary wall development in aspen woody tissues. Availability of two aspen CesA orthologs will now enable us to examine if PtrCesA1 and PtrCesA2 functionally interact during aspen wood development that has long-term implications on genetic improvement of forest trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号