首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
The acid-induced isomerization (the N-F transition) and expansion of bovine plasma albumin were studied by measuring fluorescence polarization and lifetime of the excited state of tryptophyl fluorophors. Most of the changes (decreases) in the reciprocal of fluorescence polarization and lifetime of the excited state correlated exactly with the N-F1 transition and/or the initial part of the N-F transition. These findings suggest that though the N-F transition is the cooperative pH-dependent conformational transition, the N-F transition clearly involves an intermediate step, such as the N-F1 and F1-F2 transitions. Rotational relaxation times for the N- and F-forms obtained by Perrin plot of tryptophyl fluorescence polarization were approximately 75 and 120-180 ns, respectively. The unexpected short rotational relaxation time of 75 ns of the N-form might be due to the rotational freedom of the tryptophyl side chain itself and/or of small flexible loci where tryptophyl fluorophors attach.  相似文献   

2.
Bovine plasma albumin (BPA) has approximately one SH group (Cys-34) which catalyzes the intramolecular SH, S-S exchange reaction in the alkaline region at low ionic strength, resulting in the formation of the aged form. So, the N-B transition at ionic strength above 0.20 and below 0.10 was studied using BPA and iodoacetamide-blocked BPA (IA-BPA), respectively. (1) pH profiles of [theta]262 and [theta]268 of BPA in 0.20 M KCl showed the characteristic changes in the pH region 7.0-9.0, corresponding to the N-B transition. On going from pH 7.0 to 9.0 in 0.10 M KCl or NaCl, IA-BPA did not show significant changes in rotational relaxation times of tryptophyl fluorophors, CD-resolved secondary structures, spin-echo 1H-n.m.r. spectra and cross-relaxation times (TIS) between irradiated and observed protein protons, which might reflect the rigidity of the domains and/or subdomains. On the other hand, rotational relaxation times of 1-anilino-8-naphthalenesulfonate-IA-BPA complex (IA-BPA-ANS0.9, molar ratio of ANS to IA-BPA = 0.9/1) showed significant decreases from 131 to 114 ns on going from the N- to the B-forms in 0.10 M KCl. The above results and reported experimental evidence might indicate that on going from the N- to the B-forms in 0.10 M KCl or NaCl, the mutual movement of subdomains, connected with a flexible hinge region (Brown & Shockley (1982)) might increase without loss in the helicity and the rigidity of subdomains. (2) The N-B transition of IA-BPA in the absence of salt was quite different from those in 0.10 M KCl or NaCl. Decreases in the helicity and the intramolecular rigidity, as monitored by TIS-measurements, were observed on going from the N- to the B-forms.  相似文献   

3.
Bovine plasma albumin Fr. V (BPA) has been known to contain small amounts of proteolytic enzyme. Wilson & Foster (1971) found a very limited and specific cleavage of BPA catalyzed by the enzyme with BPA in the F-form near pH 3.8, resulting in the formation of partially hydrolyzed BPA (BPA*). BPA* had a tendency to form a transparent gel at pD 4.0 (pD range of the F-form) above 8%, though proteolytic enzyme-free bovine mercaptalbumin (BMA) was in a transparent solution at pD 4.0 even at 12%. Water structures of the F-form of BMA in the solution state and of BPA* in the gel state were studied by measuring 1H-n.m.r. spectra, spin-lattice relaxation time (T1) and cross relaxation time (TIS) between irradiated and observed protons. Protein concentration-dependent changes of T1 of water protons indicated that the amount of hydrated water of BPA* in the gel state is far greater than that of the F-form of BMA in the solution state. TIS values from protein protons to water protons also indicated a large amount of hydration of BPA*, strong interaction between water and BPA* and rapid exchange between bound and bulk water in the gel state.  相似文献   

4.
Antimicrobial peptides are universal host defense membrane-targeting molecules in a variety of life forms. Structure elucidation provides important insight into the mechanism of action. Here we present the three-dimensional structure of a membrane peptide in complex with dioctanoyl phosphatidylglycerol (D8PG) micelles determined by solution NMR spectroscopy. The model peptide, derived from the key antibacterial region of human LL-37, adopted an amphipathic helical structure based on 182 NOE-generated distance restraints and 34 chemical shift-derived angle restraints. Using the same NOESY experiment, it is also possible to delineate in detail the location of this peptide in lipid micelles via one-dimensional slice analysis of the intermolecular NOE cross peaks between the peptide and lipid. Hydrophobic aromatic side chains gave medium to strong NOE cross peaks, backbone amide protons and interfacial arginine side chain HN protons showed weak cross peaks, and arginine side chains on the hydrophilic face yielded no cross peaks with D8PG. Such a peptide-lipid intermolecular NOE pattern indicates a surface location of the amphipathic helix on the lipid micelle. In contrast, the epsilon HN protons of the three arginine side chains showed more or less similar intermolecular NOE cross peaks with lipid acyl chains when the helical structure was disrupted by selective d-amino acid incorporation, providing the basis for the selective toxic effect of the peptide against bacteria but not human cells. The differences in the intermolecular NOE patterns indicate that these peptides interact with model membranes in different mechanisms. Major NMR experiments for detecting protein-lipid NOE cross peaks are discussed.  相似文献   

5.
The domain III of bovine serum albumin containing residues 377-582 of the protein sequence was isolated and its behaviour in acid solution was studied. The fragment was found to undergo structural transformations over the pH range 3.5-4.5 known to cause N-F transition in serum albumin. On the other hand, an albumin fragment that was devoid of domain III was unable to exhibit such a transition. These results were consistent with a mechanism where N-F transition involves the separation of domain III from the rest of the albumin starts at about pH 4.3 and is completed at pH 3.5.  相似文献   

6.
Using fluorescence parameters of tryptophanyl and bound ANS, the acid-induced structural transitions of defatted monomeric human serum albumin were measured as pH-dependences from 6 to 2.5 in the wide range of temperature (10 to 45 degrees C) and ionic strength (from 0.001 to 0.2 M NaCl or 0.067 M Na2SO4). Temperature rise and decrease in ionic strength value result in the splitting of the N-F-transition onto two stages, N-F1 and F1-F2. The N-F1-transition is accompanied by the blue shift of tryptophanyl and ANS fluorescence spectra and increase in the ANS emission yield. The F1-F2-stage is manifested in an additional blue spectral shift and a sharp drop of the ANS emission yield, which is shown to be due to the lowering of albumin affinity for the dye. In the acidic-extension stage (F2-E), the spectra undergo a red shift which means that the nanosecond dipole relaxation of protein groups and bound water becomes faster. In the F2 from, the albumin affinity for ANS is significantly lowered; the association constant of the primary binding site is lower by an order of quantity and two secondary sites are practically disappeared. The complex effect of temperature, ionic strength and pH changes on the properties of ANS-binding sites is considered as a model of possible control influences of these factors upon the albumin transport of amphiphilic anions in organism.  相似文献   

7.
1H-n.m.r. studies of squash seed trypsin inhibitor   总被引:1,自引:0,他引:1  
1H-n.m.r. studies at 500 MHz have been performed on a trypsin inhibitor (CMTI-III) found in squash seed (Cucurbita maxima). The sequential resonance assignments have been made using two-dimensional techniques. The chemical shifts for the assigned protons are reported at 30 degrees, pH 2.8 and form a basis for the determination of the solution structure of CMTI-III. Analysis of the NOE data, NH-alpha CH vicinal coupling constants and pattern of slowly exchanging amide protons indicates that the predominant feature of the solution conformation is a triple stranded beta sheet consisting of residues 8-10, 21-23, and 26-29. Residues 12-15 appear to form a beta turn.  相似文献   

8.
Summary The methods which have been used for the observation and assignment of resonances in the NMR spectra of proteins are reviewed. One such method, the selective deuteration of the aromatic protons of tryptophyl residues, is studied by NMR spectroscopy in model compounds in this paper, and in proteins in the following paper.On the basis of a reassignment of the PMR spectrum of the aromatic protons of L-tryptophan, the relative rates of H-D exchange in deutero-trifluoroacetic acid (d-TFA) are H-2 > H-5 > H-6 > H-4 – H-7. The energies of activation for the first order exchange of both the H-2 and H-5 protons is 12 k.cal.mol–1.The rate constant for exchange of the H-2 protons of tryptophyl residues in peptides is much greater than in the amino acid itself and 5–10 times that for exchange of the H-5 protons. This suggests that the method can be used to label tryptophyl residues in proteins rapidly and specifically.An invited article.  相似文献   

9.
1H- and 2H-NMR study of bovine serum albumin solutions   总被引:1,自引:0,他引:1  
Frozen, native and denatured bovine serum albumin solutions have been studied with a wide-band NMR pulse spectrometer. Both macromolecular and water protons spin-spin and spin-lattice relaxation times--t2m, t1m, t2w, t1w--have been measured between 170 and 360 K. In the native sample, the t2m process is the tumbling rate of the bovine serum albumin molecules. It gives to the spin-lattice relaxation an omega 0(-2) frequency dependence at room temperature in the studied frequency range, 6-90 MHz. An additional process contributes to t1m-1; it arises from internal backbone or segmental motions and provides a lower frequency behaviour. On denaturation, bovine serum albumin molecules lose their tumbling motion and form a rigid network, while internal backbone motions seem unaffected. Calorimetric Cp measurement confirms the occurrence of a phase transition upon denaturation. 1H and 2H spin-lattice relaxation times of water protons depend mainly on bound water mobility. 1H and 2H t2w depend also on the tertiary structure of bovine serum albumin and on its mobility, because of a fast exchange process between water and some protein protons (or deutons), while a cross-relaxation process between protein and water protons contributes to 1H t1w. Denaturation has no influence on bound water motional properties and bound water population.  相似文献   

10.
The secondary structures of three gastrin analogs, HC1 X H-Trp-Nle-Asp(O-tBu)-Phe-NH2 (tetragastrin), pGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2 (octagastrin), and H-Leu-(Glu)5-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2 (minigastrin) were studied by 1H-n.m.r. in dimethylsulfoxide and in trifluoroethanol. All three compounds were found to assume a random conformation in the former solvent, while some ordered secondary structure is present in trifluoroethanol even at the tetrapeptide level. This was shown by temperature studies and solvent titrations. At least four amide protons were found to be solvent shielded in the longer hormone.  相似文献   

11.
An automated procedure for NOE assignment and three-dimensional structure refinement is presented. The input to the procedure consists of (1) an ensemble of preliminary protein NMR structures, (2) partial sequence-specific assignments for the protein and (3) the positions and volumes of unassigned NOESY cross peaks. Chemical shifts for unassigned side chain protons are predicted from the preliminary structures. The chemical shifts and unassigned NOESY cross peaks are input to an automated procedure for NOE assignment and structure calculation (ARIA) [Nilges et al. (1997) J. Mol. Biol., 269, 408–422]. ARIA is optimized for the task of structure refinement of larger proteins. Errors are filtered to ensure that sequence-specific assignments are reliable. The procedure is applied to the 27.8 kDa single-chain T cell receptor (scTCR). Preliminary NMR structures, nearly complete backbone assignments, partial assignments of side chain protons and more than 1300 unassigned NOESY cross peaks are input. Using the procedure, the resonant frequencies of more than 40 additional side chain protons are assigned. Over 400 new NOE cross peaks are assigned unambiguously. Distances derived from the automatically assigned NOEs improve the precision and quality of calculated scTCR structures. In the refined structures, a hydrophobic cluster of side chains on the scTCR surface that binds major histocompatibility complex (MHC)/antigen is revealed. It is composed of the side chains of residues from three loops and stabilizes the conformation of residues that interact with MHC.  相似文献   

12.
Summary Peptide-water interactions of a ribonuclease C-peptide analogue, RN-24 (Suc-AETAAAKFLRAHA-NH2), which exhibits significant helicity, have been studied in solution using homonuclear 2D and 3D NMR cross-relaxation experiments. Dipolar peptide proton-water proton interactions are indicated by a large number of NOESY-type cross peaks at the H2O resonance frequency, most of them with opposite sign relative to the diagonal. Some cross peaks arise from intrapeptide cross relaxation to labile protons of histidine, threonine, lysine and arginine side chains. The observed peptide-water interactions are rather uniformly distributed, involving peptide backbone and side chains equally. The data are consistent with rapid fluctuations of the conformational ensemble and the absence of peptide regions that are highly shielded from bulk solvent, even in a peptide that exhibits high propensities for formation of helical secondary structure.  相似文献   

13.
The nuclear magnetic transverse decay and the proton second moment of bovine serum albumin samples dry and hydrated with different water isotope compositions show that at temperatures around 170 K, there is a dramatic change in the dynamics of the water associated with the protein interface. By comparison, observation of the protein protons when hydrated with deuterium oxide provides no evidence for significant dynamical changes near 170 K. The proton second moment of the hydrated protein shows that the protein structure becomes more open with increasing hydration from the lyophilized condition and that the side chains extend from the protein surface into the solvent in the hydrated but not the dry cases. The proton second moment of serum albumin hydrated with H(2)O increases dramatically with decreasing temperature near 170 K, demonstrating that the water forms a rigid solid around the protein which effectively fills the surface irregularities created by the protein fold. Solvation with dimethyl sulfoxide yields small effects compared with water.  相似文献   

14.
We studied the temperature dependence of the picosecond internal dynamics of an all-beta protein, neocarzinostatin, by incoherent quasielastic neutron scattering. Measurements were made between 20 degrees C and 71 degrees C in heavy water solution. At 20 degrees C, only 33% of the nonexchanged hydrogen atoms show detectable dynamics, a number very close to the fraction of protons involved in the side chains of random coil structures, therefore suggesting a rigid structure in which the only detectable diffusive movements are those involving the side chains of random coil structures. At 61.8 degrees C, although the protein structure is still native, slight dynamic changes are detected that could reflect enhanced backbone and beta-sheet side-chain motions at this higher temperature. Conversely, all internal dynamics parameters (amplitude of diffusive motions, fraction of immobile scatterers, mean-squared vibration amplitude) rapidly change during heat-induced unfolding, indicating a major loss of rigidity of the beta-sandwich structure. The number of protons with diffusive motion increases markedly, whereas the volume occupied by the diffusive motion of protons is reduced. At the half-transition temperature (T = 71 degrees C) most of backbone and beta-sheet side-chain hydrogen atoms are involved in picosecond dynamics.  相似文献   

15.
We show for the first time that the secondary structure of the Alzheimer beta-peptide is in a temperature-dependent equilibrium between an extended left-handed 3(1) helix and a flexible random coil conformation. Circular dichroism spectra, recorded at 0.03 mM peptide concentration, show that the equilibrium is shifted towards increasing left-handed 3(1) helix structure towards lower temperatures. High resolution nuclear magnetic resonance (NMR) spectroscopy has been used to study the Alzheimer peptide fragment Abeta(12-28) in aqueous solution at 0 degrees C and higher temperatures. NMR translation diffusion measurements show that the observed peptide is in monomeric form. The chemical shift dispersion of the amide protons increases towards lower temperatures, in agreement with the increased population of a well-ordered secondary structure. The solvent exchange rates of the amide protons at 0 degrees C and pH 4.5 vary within at least two orders of magnitude. The lowest exchange rates (0.03-0.04 min(-1)) imply that the corresponding amide protons may be involved in hydrogen bonding with neighboring side chains.  相似文献   

16.
We have determined, via 1H-n.m.r., the solution conformation of the collagen-binding b-domain of the bovine seminal fluid protein PDC-109 (PDC-109/b). The structure determination is based on 341 interproton distance estimates and 42 dihedral angle estimates: a set of 24 initial structures were computed; 12 using the variable target function program DIANA, and 12 using the metric matrix program DISGEO. These structures were optimized by restrained energy minimization and dynamic simulated annealing using the CHARMM and X-PLOR programs. The average pairwise root-mean-square difference (r.m.s.d) between the optimized DIANA (DISGEO) structures is 0.71 A (0.82 A) for the backbone atoms, and 1.73 A (2.03 A) for all atoms. Both sets of structures exhibit the same global fold, secondary structure and placement of most non-polar side-chains. Two central antiparallel beta-sheets, which lie roughly perpendicular to each other, and two irregular loops support a large, partially exposed, hydrophobic surface that defines a putative binding site. A test of a hybrid relaxation matrix-based distance refinement protocol (MIDGE program) was performed using a normalized 250 millisecond NOESY spectrum. The resulting distances were input to the molecular mechanics/dynamics procedures mentioned above in order to optimize the DIANA structures. Our results indicate that relaxation matrix refinement of distances is most useful when used conservatively for identifying underestimated distance constraints. 1H-n.m.r. monitored ligand titration experiments revealed definite, albeit weak, binding interactions for phenethylamine and leucine analogs (Ka less than or equal to 25 M-1). Residues perturbed by ligand binding include Tyr7, Trp26, Tyr33, Asp34 and Trp39. These results suggest that PDC-109/b may recognize specific leucine and/or isoleucine-containing sequences within collagen.  相似文献   

17.
Fluorescent probe N-phenyl-1-amino-8-sulfonaphthalene (ANS) was used for studying pH-dependent structural N-F-transition in human serum albumin of two kinds: in commercial albumin and in natural blood serum. The kinetics of ANS fluorescence decay in albumin solutions was measured. There were found two types of the sites occupied by ANS in albumin under physiological conditions (pH 7.4). In the first binding site ANS fluorescence decay time was 16.6 +/- 0.3 nsec and it was not significantly changed at N-F transition (pH 4.0). In the second binding site the decay time was dependent on pH in commercial albumin and was not significantly changed in serum. In the second binding site there were individual differences of ANS decay time (4.3 +/- 0.6 nsec). The observed ANS fluorescence intensity enhancing (about 40-50%) in N-F transition may be explained by an increase of albumin binding sites capacity for ANS.  相似文献   

18.
1H- and 2H-n.m.r. studies of gamma-irradiation-induced variations in the dynamic structure and proportional amounts of free, trapped and bound water species in multilamellar liposomes are reported and discussed. Bound water is shown to increase with dose and to be present in two different structural states. A dose-dependent decrease in the 1H-n.m.r. relaxation times of bound water following gamma-irradiation is reported. Variations are suggested as being due to large scale changes at the bilayer surface.  相似文献   

19.
The 1H n.m.r. chemical shifts and the spin-spin coupling constants of the N-terminal 19-residue S-peptide of ribonuclease A have been measured in a 10 mM solution in D2O, pD 3.0, 27 degrees, at 300 MHz. The titration parameters for end groups Lys-1 and Ala-19 and side chains Lys-1, Glu-2, Lys-7, Glu-9, Arg-10, His-12 and Asp-14 have been determined at 90 MHz. An assignment of observed signals to individual residue protons based upon characteristic shifts, spectral analysis, double resonance, titration shifts and comparison with the spectrum of C-peptide (N-terminal 13-residue) is proposed. Differences in the observed chemical shifts, pKa's and titration shifts with reference to those proposed as "random coil" parameters are not large enough to assume the existence of a significant population of secondary structure in the conditions studied. The H alpha chemical shifts differences can be accounted for by the Phe-8 phenyl ring current for an extended peptide backbone conformation and appropriate values for the torsion angles chi 1 Phe-8 and chi 2 Phe-8.  相似文献   

20.
Bovine plasma albumin (BPA) showed the acid-induced two-step transition, the N-F transition and acid-expansion. Changes in fractions of alpha-helix (f alpha), beta-form (f beta) and unordered form (fR) in the acid-induced isomerization of BPA were studied using the method of Chen et al. (1972) with two constraints: sigma fi = 1, 0 less than or equal to fi less than or equal to 1. pH-profiles of f alpha and fR showed the two-step change, one corresponding to the N-F transition and the other to the acid-expansion in 0.10 M KCl and in 0.02 M NaClO4. pH-profile of f beta showed one-step change, correlating to the later part (lower pH side) of the N-F transition. The N-F transition might thus involve the helix leads to beta and helix leads to coil transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号