首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patulin Production by Penicillium urticae Bainier in Batch Culture   总被引:10,自引:10,他引:0       下载免费PDF全文
A still, batch-culture method, with potato dextrose medium and Penicillium urticae Bainier, produced patulin yields of 1.2 to 1.7 g/liter of medium. Incubation was at 25 C for 14 days. Ethyl acetate extraction of condensed culture filtrate and drying with anhydrous MgSO4, followed by solvent change to dry ethyl ether and purification on alumina (pH 4.5), produced pure crystalline patulin. The use of 2-liter, round-bottom flasks and a rotating vacuum evaporator provided versatile equipment and easy manipulation in the operations. Soil from wheat fields provided a convenient natural P. urticae source. Potato dextrose medium was superior to potato sucrose or Raulin-Thom media.  相似文献   

2.
Penicillium urticae Bainier synthesized patulin in potato-dextrose medium at temperatures ranging from 5 to 30°C. Maximum patulin yield was 2700 μg/ml of culture fluid in 14 days at 25°C. Two distinctive intervals affected patulin formation: 15 to 20°C and 30 to 35°C, the former favorable and the latter detrimental. An incubation period of 11 to 14 days made a nonsterile mixture of weathered wheat straw and soil a favorable medium for patulin formation. Autoclaved weathered wheat straw, inoculated withP. urticae alone, or in combination withTrichoderma sp., was a medium comparable to nonsterile, incubated weathered wheat straw in soil. Both carbon source and accessory growth factors were important for patulin formation. Of seven media tested, potato-dextrose was superior to potatodextrose supplemented with 70 ppm Zn-ions and 16 ppm Fe-ions, potatosucrose, Raulin-Thom, autoclaved weathered wheat straw in pure culture, weathered wheat straw in nonsterile soil, and autoclaved weathered wheat straw in mixed culture, in that order. Patulin production ranged from 337.5 to 0.2 mg/g of C in the medium. Contribution from the Northern Plains Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, in cooperation with the Nebraska Agricultural Experiment Station, Lincoln. Published as Paper No.2621, Journal Series, Nebraska Agricultural Experiment Station.  相似文献   

3.
m-Hydroxybenzyl alcohol dehydrogenase from Penicillium urticae   总被引:6,自引:0,他引:6  
  相似文献   

4.
Conidiogenesis and secondary metabolism in Penicillium urticae.   总被引:10,自引:2,他引:8       下载免费PDF全文
Submerged cultures of Penicillium urticae (NRRL 2159A) produced the antibiotics patulin and griseofulvin when grown in a glucose-nitrate medium. A high concentration of calcium (i.e., 68 mM) inhibited the production of both antibiotics while stimulating conidiogenesis. Conidial mutants that were defective in an early stage of conidiogenesis produced markedly less patulin, even under growth conditions that favored secondary metabolism. A mutant which lacked the ability to produce the patulin pathway metabolites m-cresol, toluquinol, m-hydroxybenzyl-alcohol, m-hydroxybenzaldehyde, gentisaldehyde, gentisyl alcohol, gentisic acid and patulin, as well as the pathway enzyme m-hydroxybenzyl-alcohol dehydrogenase, still produced yields of conidia that were equivalent to or greater than those of the parent strain. Other mutants which were blocked at later steps of the patulin pathway also produced conidia. These results indicate that patulin and the other related secondary metabolites noted above are not a prerequisite to conidiogenesis in P. urticae. Environmental and developmental factors such as calcium levels and conidiogenesis do, however, indirectly affect the production of patulin pathway metabolites.  相似文献   

5.
6.
7.
8.
A metabolite of a common soil fungus, Penicillium urticae, which inhibits conidia germination and growth of Beauveria bassiana, was identified. The production, extraction from the culture, and purification of the metabolite is described. Two-dimension thin-layer chromatography, reverse-phase chromatography, mass spectrophotometer and bioassay data indicate that the metabolite is patulin. The implication of patulin inhibition of B. bassiana and its subsequent effect on the potential role of B. bassiana as a control agent of soil-inhabiting insects is discussed.  相似文献   

9.
Conversion of 6-methylsalicylic acid into patulin by Penicillium urticae   总被引:7,自引:0,他引:7  
  相似文献   

10.
Eight fragments which cover the whole range of the mitochondrial genome of Penicillium urticae were subcloned into the yeast integration vector YIp5. Transformation of Saccharomyces cerevisiae with the constructed plasmids by the alkali cation method indicated that six plasmids are able to replicate in yeast. Both closed and open circular forms of the plasmids were detected in the DNA extracts from transformants. Distribution of the autonomously replicating sequence in the mitochondrial genome was similar to that in P. chrysogenum except for one small region.  相似文献   

11.
Isoepoxydon, a new metabolite of the patulin pathway in Penicillium urticae   总被引:4,自引:0,他引:4  
A patulin-negative mutant (J1) of Penicillium urticae (N.R.R.L. 2159A) was known to accumulate about 100mg per litre quantities of the 5,6-epoxygentisyl quinone, (-)-phyllostine and another metabolite (UIII). Both were derived from acetate and hence were polyketides. Purified UIII (m.p. 53 degrees C, [alpha](32) (D)+206 degrees , lambda(methanol) (max.) 240nm; epsilon 3806 litre.mol(-1).cm(-1)) was characterized as a partially reduced derivative of (-)-phyllostine and was found to be a diastereoisomer of the known phytotoxin, (+)-epoxydon. Hence its designation as (+)-iso- or epi-epoxydon. From (1)H n.m.r. and c.d. data the stereochemistry of the epoxide ring in (+)-isoepoxydon was determined to be identical with that in (+)-epoxydon (i.e. R,R) but the configuration of the secondary alcohol at C-4 was S rather than R as in (+)-epoxydon. Isoepoxydon (compound UIII) is therefore (4S,5R,6R)-5,6-epoxy-4-hydroxy-2-hydroxymethylcyclohex-2-en-1-one. The boat conformation in which the C-4 hydroxy group is axial is preferred. In the range of 1mm to 5mm, the antibiotic activity of (+)-isoepoxydon against Bacillus subtilis sp. was 56% of that obtained with patulin. Over a period of 1 to 3h, [(14)C]isoepoxydon was efficiently converted into patulin by a shake culture of the parent strain of P. urticae. The precursor relationship of isoepoxydon to patulin was confirmed by feeding unlabelled isoepoxydon (1mm) to a washed-cell suspension of a mutant (J2) in which, over a period of 3 to 5h, a better than 60% conversion into patulin was attained. The enzymic relationship between isoepoxydon and phyllostine and their positions in the late portion of the patulin biosynthetic pathway are discussed.  相似文献   

12.
A cultivation system has been developed for Penicillium urticae which yields 'microcycle' conidiation in submerged culture. Spherical growth of spores was initiated by incubation at 37 degrees C in a growth-favoring medium. Transfer of these enlarged spores to a nitrogen-poor medium at 35 degrees C results in synchronous germination and limited outgrowth followed by roughly synchronous conidiation. A study of the conidiation stage showed that a phialide and an immature conidium began to form at the tip of all germ tubes 18 h after the temperature shift. By 24 h additional phialides commonly appeared as a branch near the tip of the germ tube and the more mature conidia exhibited increasing refractility. The earliest ultrastructural signs of conidiation were various round invaginations in the plasma membrane and a thickening and rounding of the new spore wall which appeared as an inner extension of the phialide cell wall. Upon segregation of the conidium from the phialide cell by conidial wall formation, 'trench-like' invaginations gradually appeared in the plasma membrane and a disorganized rodlet pattern was formed on the outer surface of the maturing conidial wall. Continued maturation involved the formation of chains of conidia and phialide senescence which was characterized by a general degradation of intracellular structure. A comparison with standard surface and submerged culture conidiation indicated that 'microcycle' conidiation, while less prolific, was essentially identical.  相似文献   

13.
Antibiotic production by submerged cultures of Penicillium urticae required manganese supplementation of the media. Thus, manganese supplementation (152 M) allowed accumulation of patulin to high concentrations (2 mol/mL), whereas manganese deficiency (1.53 M) resulted in the accumulation to similar levels of the first committed pathway intermediate, methyl-salicylic acid, without significant patulin accumulation. Preliminary studies suggest that a similar manganese effect may occur in other fungal species.  相似文献   

14.
M J Rollins  G M Gaucher 《Microbios》1988,56(227):105-121
Two distinct patterns of activity obtained with the substrates azocasein and azocollagen suggested that Penicillium urticae produces at least two intracellular proteinases during its antibiotic-production phase. Cell extracts fractionated using high resolution gel filtration actually separated three major activities. These three pooled fractions contained predominantly cysteine-type proteinases, as indicated by their sensitivities to inhibitors and by the enhancement of their activities with dithiothreitol and ethylenediamine-tetracetic acid. One of these fractions also appeared to contain significant levels of serine-type proteinases. The three pools could be differentiated from one another by changes in their substrate specificities over a range of pH values, and by their stabilities during storage and at elevated temperatures. Further purification by non-denaturing polyacrylamide gel electrophoresis, revealed that two of the fractions each contained five apparently different activities while in the third pooled fraction, thirteen individual activities were detected. The range of properties displayed by these proteinases is consistent with their probable involvement in general protein degradation, a crucial process which during starvation sustains the supply of substrate necessary for secondary enzyme synthesis as well as contributing to the short lifetime of these same secondary enzymes.  相似文献   

15.
In continuing studies of patulin biosynthesis, the first enzyme of the pathway, 6-methylsalicylic acid synthetase, was found to be far more labile than were the later enzymes of the pathway. Attempts were made to stabilize 6-methylsalicylic acid synthetase in vitro. The combined addition of the cofactor NADPH, the substrates acetyl-CoA and malonyl-CoA, the reducing agent dithiothreitol, and the proteinase inhibitor phenylmethylsulfonyl fluoride to cell-free extracts was found to prolong the half-life of the enzyme as much as 12-fold. This suggested that proteolysis and the conformational integrity of the enzyme may play an important role in controlling the duration of antibiotic biosynthesis in vivo. This was in agreement with the finding that the intracellular proteinase content of antibiotic-producing cells of Penicillium urticae rapidly increased just before the loss of 6-methylsalicylic acid synthetase content. These in vitro stabilization studies have provided some insight into the metabolic conditions that may stabilize these enzymes in vivo, and into possible ways of extending the life of these catalysts.  相似文献   

16.
Summary An action spectrum of light induced coremia-zonation was obtained for the fungus Penicillium claviforme mut. olivicolor Abe et Ura. Zonation is induced only by light of wavelengths shorter than 510 nm. The action spectrum has maxima at 370 nm and at 450–460 nm and a definite shoulder at 470–480 nm. Penicillium claviforme mut. album is somewhat less sensitive to light but possesses the same spectral sensitivity.Measurable amounts of carotenoids are not found in the mycelium. The presence of diphenylamine in the nutrition medium has no effect on the fungal sensitivity to light. It is therefore assumed that the photoreceptor pigment involved is a flavoprotein.

Die Arbeit wurde während eines Studienaufenthaltes im Zentralinstitut für Genetik und Kulturpflanzenforschung der Deutschen Akademie der Wissenschaften zu Berlin in Gatersleben angefertigt.  相似文献   

17.
18.
19.
20.
The ultrastructure of Penicillium urticae mycelium was compared at various stages of submerged growth to examine changes associated with the onset of antibiotic biosynthesis. Penicillium urticae was shown to be a normal eukaryotic, septate, filamentous fungus with a variety of subcellular components. Younger mycelia possessed a denser cytoplasm which gave way to a more granular and vacuolated cytoplasm as the organism made the transition into antibiotic biosynthesis. An increase in the thickness, and perhaps the structural complexity, of the cell wall also occurred over the transition. There was evidence of a glycocalyx surrounding the hyphae. Discrete granules, termed peripheral particles, appeared and increased in number over the transition. Their biochemical content and possible involvement in patulin production was tested by examining P. urticae after growth in media of different composition, and by examining the ultrastructure of a patulin minus mutant, P3. The significance of these observations in relation to patulin production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号