首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The release of photosynthate from leaf slices of soybean [ Glycine max (L.) Merr. cv. Ransom II], to a bathing medium was studied to ascertain how p -chloromercuribenzenesulfonic acid (PCMBS) can both stimulate and inhibit sucrose release. Soybean leaf slices released photosynthate to a bathing medium at a rate that was approximately linear with time. The photosynthate released was about 20% ionic and 80% non-ionic, and sucrose represented about 75% of the total. Removal of Ca2+ from the medium increased the rate of release of all fractions, but amino acid release showed the largest increase. Sucrose was released at a rate estimated to be about 20% of the normal transport rate in intact leaves. The rate of sucrose uptake from 5 m M sucrose into soybean leaf slices was optimum at pH 6.3, and the rate of sucrose release was lowest at the same pH. However, sucrose uptake was found to be insignificant during release experiments. Sucrose release, but not amino acid release, was inhibited 75% by 1 m M PCMBS.
The data support two components of sucrose release in leaves. The first is insensitive to the addition of PCMBS. This component probably represents leakage from phloem tissue. The second component is inhibited by PCMBS and probably represents release from the mesophyll. By comparing sucrose release from leaf slices of 12 different species of plants, 2 groups were found. In the first group, sucrose release was inhibited between 60 and 80% by PCMBS, and in the second group between 0% and 40%. The difference in the two groups can be explained by a relative difference in the size of the two components of sucrose release for each species.  相似文献   

2.
The effect of pretreatment of cucumber (Cucumis sativus L.) roots with choline chloride or ethanolamine on leaf phospholipid composition and light-induced leaf damage during chilling was studied. Photooxidative chlorophyll degradation was similarly inhibited by both amino alcohols. The decrease of the chlorophyll a/chlorophyll b ratio and the increase of polyunsaturated-fatty-acid degradation during chilling in the light were equally inhibited by pretreatment with choline chloride or ethanolamine. Treatment with choline chloride and ethanolamine caused, respectively, 43% and 26% increases in the total phospholipid contents of the leaves. After treatment with choline chloride, the phosphatidylcholine content was higher than the content of phosphatidylethanolamine; the reverse was true after treatment with ethanolamine. The chlorophyll concentration increased less than the phospholipid concentration, resulting in a decreased chlorophyll/phospholipid ratio of treated leaves. During chilling in the light, degradation of phosphatidylcholine, ethanolamine and phosphatidyl glycerol occurred. Phosphatidyl glycerol was less sensitive than phosphatidylcholine and ethanolamine. The degradation was equally inhibited by pretreatment with either amino alcohol. Possible connections between the phospholipid content of leaf membranes and the inhibition of chilling-induced photooxidative leaf damage are discussed.Abbreviations CC choline chloride - Chl chlorophyll - EA ethanolamine - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol  相似文献   

3.
Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe inhibitor when allowed to accumulate in the culture. Concentrations of 5-10 mM H(2) in the gas phase (identical with partial hydrogen pressure (pH(2)) of (1-2) x 10(4) Pa) initiated a metabolic shift to lactate formation. The extent of inhibition by hydrogen was dependent on the density of the culture. The highest tolerance for hydrogen was found at low volumetric hydrogen production rates, as occurred in cultures with low cell densities. Under those conditions the critical hydrogen concentration in the gas phase was 27.7 mM H(2) (identical with pH(2) of 5.6 x 10(4) Pa); above this value hydrogen production ceased completely. With an efficient removal of hydrogen sucrose fermentation was mainly inhibited by sodium acetate. The critical concentrations of sucrose and acetate, at which growth and hydrogen production was completely inhibited (at neutral pH and 70 degrees C), were 292 and 365 mM, respectively. Inorganic salts, such as sodium chloride, mimicked the effect of sodium acetate, implying that ionic strength was responsible for inhibition. Undissociated acetate did not contribute to inhibition of cultures at neutral or slightly acidic pH. Exposure of exponentially growing cultures to concentrations of sodium acetate or sodium chloride higher than ca. 175 mM caused cell lysis, probably due to activation of autolysins.  相似文献   

4.
1. Carbonic anhydrase (E.C.4.2.1.1) catalysed CO2 hydration was studied with enzymes from mammalian and insect sources at CO2 concentrations of 7.6-30.8 mM. 2. At 0.01-0.15 M, potassium chloride (KCl) or choline chloride (ChCl) markedly inhibited all 8 mammalian enzymes studied. 3. Inhibition by KCl is always greater than that associated with ChCl. 4. KCl non-competitively inhibits and choline chloride competitively inhibits bovine carbonic anhydrase. 5. Carbonic anhydrase obtained from fat body, integumentary epithelium and midgut tissues of larval tobacco hornworms, Manduca sexta, is greatly stimulated by KCl and slightly inhibited by ChCl. 6. We propose that the effect of K+ on mammalian and insect carbonic anhydrases if fundamentally different.  相似文献   

5.
Calcium sensitivity of vertebrate skeletal muscle myosin   总被引:3,自引:0,他引:3  
D L Pulliam  V Sawyna  R J Levine 《Biochemistry》1983,22(10):2324-2331
The calcium sensitivity of vertebrate skeletal muscle myosin has been investigated. Adenosinetriphosphatase (ATPase) activity was assayed in a reconstituted system composed of either purified rabbit myosin plus actin or myosin plus actin, tropomyosin, and troponin. The calcium sensitivity of actomyosin Mg-ATPase activity was found to be directly affected by the ionic strength of the assay medium. Actomyosin assayed at approximately physiological ionic strength (120 mM KCl) demonstrated calcium sensitivity which varied between 6 and 52%, depending on the myosin preparation and the age of the myosin. Mg-ATPase activity was increased when calcium was present in the assay medium at physiological ionic strength. Conversely, actomyosin Mg-ATPase activity assayed at a lower ionic strength (15 mM KCl) was inhibited by addition of calcium. Addition of tropomyosin and troponin to the assay increased the calcium sensitivity of the system at the physiological ionic strength still further (up to 99% calcium sensitivity) and conferred calcium sensitivity on the system at the lower ionic strength (greater than 90% calcium sensitivity). A correlation also existed between myosin's calcium sensitivity and the phosphorylated state of light chain 2.  相似文献   

6.
Calcium release from sarcoplasmic reticulum vesicles presumably derived from longitudinal tubules (LSR) and terminal cisternae (HSR) of rabbit skeletal muscle was investigated by dual wavelength spectrophotometry using the calcium-indicator antipyrylazo III. In 120 mM KCl, 5 mM MgCl2, 30 microM, CaCl2, 50 microM MgATP, 100 microM antipyrylazo III, 40 mM histidine (pH 6.8, 25 degrees C), LSR and HSR sequestered approx. 115 nmol calcium/mg, and then spontaneously released calcium. Analysis of ATP hydrolysis and phosphoenzyme level during LSR and HSR calcium sequestration indicated that this calcium release process was passive, occurring in the virtual absence of ATP and phosphoenzyme. Moreover, subsequent addition of ATP reinitiated the calcium sequestration-release sequence. Calcium release by HSR was more than 4-times faster than that by LSR. Analysis of the calcium release phase demonstrated a biexponential decay for both LSR (0.10 and 0.63 min-1) and HSR (0.26 and 1.65 min-1), suggestive of heterogeneity within each fraction. Replacement of 120 mM KCl with either 120 mM choline chloride, 240 mM sucrose, or H2O reduced maximal calcium sequestration by LSR, but had less effect on LSR calcium release rate constants. In the case of HSR, these changes in the ionic composition of the medium drastically reduced calcium release rate constants with little effect on calcium content. These marked differences between LSR and HSR are consistent with the hypothesis that the calcium permeability of the terminal cisternae is greater and more sensitive to the ionic environment than is that of the longitudinal tubules of sarcoplasmic reticulum.  相似文献   

7.
Extracellular ATP rendered the plasma membrane of transformed mouse fibroblasts permeable to normally impermeant molecules. This permeability change was prevented by increasing the ionic strength of the isotonic medium with NaCl. Conversely, the cells exhibited increased sensitivity to ATP when the NaCl concentration was decreased below isotonicity, when the KCl concentration was increased above 5 mM while maintaining isotonicity, and when the pH of the medium was raised above 7.0. These conditions as well as the addition of ATP itself caused cell swelling. However, the effect of ATP was independent of cell volume and dependent upon the ionic strength and not the osmolarity of the medium since 1) addition of sucrose to isotonic medium did not prevent permeabilization although media made hypertonic with either sucrose or NaCl caused a decrease in cell volume; and 2) addition of sucrose or NaCl to hypotonic media caused a decrease in cell volume, but only NaCl addition decreased the response to ATP. Conditions that have been shown to inhibit plasma membrane proteins that play a reciprocal role in cell volume regulation had reciprocal effects on the permeabilization process, even though the effect of ATP was independent of cell volume. For example, inhibition of the Na+,K+-ATPase by ouabain increased sensitivity of cells to ATP while conditions which inhibit Na+,K+,Cl- -cotransporter activity, such as treatment of the cells with the diuretics furosemide or bumetanide or replacement of sodium chloride in the medium with sodium nitrate or thiocyanate, inhibited permeabilization. The furosemide concentration that inhibited permeabilization was greater than the concentration that inhibited Na+,K+,Cl- -cotransporter-mediated 86Rb+ (K+) uptake, suggesting that the effect of furosemide on the permeabilization process may not be specific for the Na+,K+,Cl- -cotransporter.  相似文献   

8.
Sucrose Metabolism in Lupinus albus L. Under Salt Stress   总被引:3,自引:0,他引:3  
Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Chaudhuri M  Parris DS 《Journal of virology》2002,76(20):10270-10281
The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T). To test this hypothesis, we took advantage of the different sensitivities of Pol and Pol/UL42 activities to ionic strength. Although the activity of Pol is inhibited by salt concentrations in excess of 50 mM KCl, the activity of the holoenzyme is relatively refractory to changes in ionic strength from 50 to 125 mM KCl. We used nitrocellulose filter-binding assays and real-time biosensor technology to measure binding affinities and dissociation rate constants of the individual subunits and holoenzyme for a short model P/T as a function of the ionic strength of the buffer. We found that as observed for activity, the binding affinity and dissociation rate constant of the Pol/UL42 holoenzyme for P/T were not altered substantially in high- versus low-ionic-strength buffer. In 50 mM KCl, the apparent affinity with which UL42 bound the P/T did not differ by more than twofold compared to that observed for Pol or Pol/UL42 in the same low-ionic-strength buffer. However, increasing the ionic strength dramatically decreased the affinity of UL42 for P/T, such that it was reduced more than 3 orders of magnitude from that of Pol/UL42 in 125 mM KCl. Real-time binding kinetics revealed that much of the reduced affinity could be attributable to an extremely rapid dissociation of UL42 from the P/T in high-ionic-strength buffer. The resistance of the activity, binding affinity, and stability of the holoenzyme for the model P/T to increases in ionic strength, despite the low apparent affinity and poor stability with which UL42 binds the model P/T in high concentrations of salt, suggests that UL42 does not simply tether the Pol to DNA. Instead, it is likely that conformational alterations induced by interaction of UL42 with Pol allow for high-affinity and high-stability binding of the holoenzyme to the P/T even under high-ionic-strength conditions.  相似文献   

10.
Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) from the halophilic cyanobacterium, Aphanothece halophytica, dissociates into catalytic core (large subunit A oligomer) and small subunit B under low ionic strength during sucrose density gradient centrifugation. Supplementation of KCl, NaCl, or K2SO4 ( [I] = 0.3 M) partly prevents the dissociation, the preventive effect of divalent cation salts such as MgCl2 and CaCl2 being more effective than monovalent cation salts. RuBisCO with its higher-plant-type molecular form can be isolated from the cyanobacterial extracts using gradient medium containing 0.3 M KCl, 20 mM MgCl2, and 10 mM CaCl2. The isolated enzyme contains large subunit A and small subunit B in a molar ratio of approximately 1:1, estimated from the densitometric scanning of Coomassie blue-stained gels. During the second sucrose density gradient centrifugation to remove minor contaminants, a small amount of subunit B is depleted from the holoenzyme. Determination of the molecular weight by equilibrium centrifugation and electron microscopic observation have confirmed that the cyanobacterial RuBisCO has an A8B8-type structure. The enzyme activity per se is found to be sensitive to concentrations of salts, and small subunit B is obligatory for the enzyme catalysis. It has been shown that the more the enzyme activity is inhibited by salts, the tighter the association of subunit B becomes. It is likely that the active enzyme retains the loose conformational structure to such an extent that the dissociable release of subunit B from the holoenzyme in vivo is not allowed.  相似文献   

11.
We studied the effects of synthetic analogs of phytohormones (benzyladenine, IAA, and GA) on the activities of the enzymes catalyzing sucrose synthesis and metabolism, sucrose phosphate synthase (SPS, EC 2.4.1.14) and sucrose synthase (SS, EC 2.4.1.13), and on the content of chlorophyll and protein during the sugar-beet (Beta vulgaris L.) ontogeny. Plant spraying with phytohormonal preparations activated SPS in leaves; direct interaction between phytohormones and the enzyme also increased its activity. The degree of this activation differed during the ontogeny and in dependence on the compound used for treatment. Analogs of phytohormones maintained high protein level in leaves, retarded chlorophyll breakdown, and, thus, prolonged leaf functional activity during development. Phytohormonal preparations practically did not affect the SS activity both after plant treatment and at their direct interaction with the enzyme. It is supposed that the SS activity in sugar-beet roots is controlled by sucrose synthesized in leaves rather than by phytohormones. The effects of hormones on leaf metabolism were mainly manifested in growth activation.  相似文献   

12.
Isolated intact frog muscle fibers, while shortening with the intrinsic maximal speed, were stretched back to the original length to measure the kinetics of force redevelopment. These kinetics give information on the attachment rate constant in the cross-bridge cycle in vivo, and a value of approximately 25.6 s-1 (0 degree C) is found in the present study. We find that these kinetics were slightly less sensitive to temperature than was the unloaded shortening speed. The effect of hyperosmolarity on force redevelopment was also measured in solutions with added sucrose or KCl. The rate constant was nearly halved with 120 mM sucrose, but there was practically no effect with isosmotic (60 mM) KCl. These results indicate that the rate constant of force redevelopment is insensitive to raised intracellular ionic strength. In sucrose, the fiber width was also compressed, and the attenuation of the rate constant of force redevelopment in this case is consequently attributed to the decrease in interfilament space. The order of magnitude of the rate constant found in this study suggests that tension transduction by a cross-bridge, during each turnover cycle, requires a series of elementary steps following the attachment.  相似文献   

13.
The mechanism of iron transport into erythroid cells was investigated using rabbit reticulocytes and mature erythrocytes incubated with 59Fe-labelled Fe(II) in isotonic sucrose or in solutions in which the sucrose was replaced with varying amounts of isotonic NaCl or KCl. Iron uptake was inhibited at all concentrations of NaCl, in a concentration-dependent manner, but with KCl inhibition occurred only at concentrations up to 10 mM. Higher KCl concentrations stimulated iron uptake to the cytosol of the cells, but inhibited its incorporation into heme. This effect became more marked as the iron concentration was raised. It was found that KCl inhibits iron incorporation into heme and stimulates iron uptake by mature erythrocytes, as well as by reticulocytes. It is concluded that erythroid cells can take up nontransferrin-bound Fe(II) by two mechanisms. One is a high-affinity mechanism that is limited to reticulocytes, saturates at a low iron concentration, and is inhibited by metabolic inhibitors. The other is a low-affinity process that is found in both reticulocytes and erythrocytes, becomes more prominent at higher iron concentrations, and is stimulated by KCl, as well as RbCl, LiCl, CsCl, and choline Cl. The KCl stimulation is inhibited by amiloride, but not by metabolic inhibitors, and its operation is not dependent on changes in cell volume or membrane potential, but it does require the presence of a permeant extracellular anion. Iron uptake by this process appears to occur by facilitated transport and is possibly assoicated with exchange of Na+. A further aspect of this study was a comparison of iron uptake by reticulocytes from Fe(II)-sucrose and Fe(II)-ascorbate using a variety of incubation conditions. No major differences were observed. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The activity of sucrose-phosphate synthase (SPS) in sugar beet (Beta vulgaris L.) leaves was shown to exceed considerably the synthesizing activity of sucrose synthase (SS). The rise in SPS activity was related to the daylight period; i.e., it was associated with the rate of photosynthesis. The highest SPS activity was characteristic of fully expanded source leaves. In young developing leaves (leaves expanded to less than half of their final size), which represent the sink organs, the SPS activity was 2.5 times lower. At all stages of leaf development, the synthesizing SS activity was rather low. The diurnal change of SS activity was independent of photosynthesis and showed a slight rise from 6:00–8:00 p.m. Under field conditions, the highest SPS activity was found in leaves in the terminal stage of their development (105-day-old plants); the synthesizing activity of SS showed little changes during this period. The activity of soluble acid invertase was characteristic of young leaves. In mature leaves, the activity of this enzyme correlated with the daylight period. These changes occurred on the background of low sucrose content in leaves. The regulation of SPS, SS, and invertase activity is discussed. It is supposed that compartmentation of these enzymes in the photosynthesizing cell is important for transport, metabolism, and the osmotic function of sucrose in leaves.  相似文献   

15.
The effects of fluoride on the tonoplast type ATPase and transport activities associated with sealed membrane vesicles isolated from sugarbeet (Beta vulgaris L.) storage tissue were examined. This anion had two distinct effects upon the proton-pumping vesicles. When ATP hydrolysis was measured in the presence of gramicidin D, significant inhibition (approximately 50%) only occurred when the fluoride concentration approached 50 millimolar. In contrast, the same degree of inhibition of proton transport occurred when the fluoride concentration was about 24 millimolar. Effects on proton pumping at this concentration of fluoride could be attributed to an inhibition of chloride movement which serves to dissipate the vesicle membrane potential. Valinomycin could partially restore ATPase activity in sealed vesicles which were inhibited by fluoride and this restoration occurred with a reduction in the membrane potential. Fluoride demonstrated a competitive interaction with chloride-stimulation of proton transport and inhibited the uptake of radioactive chloride into sealed vesicles. When the vesicles were allowed to develop a pH gradient in the absence of KCl, and KCl was subsequently added, fluoride reduced enhancement of the existing pH gradient by KCl. The results are consistent with a chloride carrier that is inhibited by fluoride.  相似文献   

16.
The pattern of stomatal opening in epidermal strips detached from leaves of Commelina benghalensis was examined. Two different phases could be distinguished in the stomatal response to KCl, one at low concentrations of KCl (up to 60 mM) and the other at high KCl concentrations (above 100 mM). The stomatal opening at low KCl concentrations was stimulated remarkably by light or fusicoccin and was suppressed by abscisic acid. At higher KCl concentrations, the stimulation by light or FC as well as the inhibition by ABA was limited. Both phases of stomatal response to KCl were sensitive to carbonyl cyanide-m-chlorophenyl hydrazone. The results suggest that illumination or FC favours selectively stomatal opening only at low KCl concentrations. The ionic participation in the stomatal opening is similar to the heterophasic uptake of ions by plant cells/roots.Abbreviations FC fusicoccin - ABA abscisic acid - CCCP carbonyl cyanide-m-chlorophenyl hydrazone  相似文献   

17.
Modification of our previous procedure for the isolation of microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue allowed the recovery of sealed membrane vesicles displaying proton transport activity sensitive to both nitrate and orthovanadate. In the absence of a high salt concentration in the homogenization medium, contributions of nitrate-sensitive (tonoplast) and vanadate-sensitive (plasma membrane) proton transport were roughly equal. The addition of 0.25 M KCl to the homogenization medium increased the relative amount of nitrate-inhibited proton transport activity while the addition of 0.25 M KI resulted in proton pumping vesicles displaying inhibition by vanadate but stimulation by nitrate. These effects appeared to result from selective sealing of either plasma membrane or tonoplast membrane vesicles during homogenization in the presence of the two salts. Following centrifugation on linear sucrose gradients it was shown that the nitrate-sensitive, proton-transporting vesicles banded at low density and comigrated with nitrate-sensitive ATPase activity while the vanadate-sensitive, proton-transporting vesicles banded at a much higher density and comigrated with vanadate-sensitive ATPase. The properties of the vanadate-sensitive proton pumping vesicles were further characterized in microsomal membrane fractions produced by homogenization in the presence of 0.25 M KI and centrifugation on discontinuous sucrose density gradients. Proton transport was substrate specific for ATP, displayed a sharp pH optimum at 6.5, and was insensitive to azide but inhibited by N'-N-dicyclohexylcarbodiimide, diethylstilbestrol, and fluoride. The Km of proton transport for Mg:ATP was 0.67 mM and the K0.5 for vanadate inhibition was at about 50 microM. These properties are identical to those displayed by the plasma membrane ATPase and confirm a plasma membrane origin for the vesicles.  相似文献   

18.
The distribution of activity of the elongation factors EF-1 and EF-2 among the components of rabbit reticulocyte lysate separated by sucrose density gradient centrifugation was studied. At low ionic strength (0.01 M KCl) about 30% of the EF-1 activity was found in polyribosomes. At moderate ionic strength (0.1 M KCl) the EF-1 activity was absent in the polyribosomes. An addition of RNA excess to the lysate prior to centrifugation at low ionic strength resulted in elimination of the EF-1 activity from the polyribosomes. This indicates that EF-1 is reversibly bound to the polyribosomes and that EF-1 may be retained on them due to interaction with RNA of polysomes mediated by its RNA-binding site. After dissociation of polyribosomes containing EF-1 in the presence of EDTA and subsequent fractionation of the dissociation products at low ionic strength (0.01 M KCl) the EF-1 activity was revealed in the ribosomal subparticles (predominantly in 60S). At 0.1 M KCl EF-1 mainly sedimented in the zone of distribution of polyribosomal informosomes. The elongation factor EF-2 was not revealed in polyribosomes during lysate centrifugation even at low ionic strength which corresponds to its lower affinity for RNA.  相似文献   

19.
The transport of lysine has been investigated in epithelial cells isolated from chicken jejunum. The kinetics of lysine transport and the pattern of interaction with zwitterionic amino acids were consistent with system b(0,+) activity, the broad-spectrum and Na(+)-independent amino acid transporter. The half-saturation constant for lysine entry (K(m)+/-S.E.) was 0.029+/-0.002 mM and the flux was not affected significantly by Na(+) replacement with choline. Lysine influx was inhibited by L-leucine both in Na(+) and choline medium with inhibition constants (K(i)+/-S.E.) 0.068+/-0.006 mM (in Na(+)) and 0.065+/-0.009 mM (in choline). Other inhibitory amino acids (K(i)+/-S.E.) were (mM): L-tyrosine (0.073+/-0.018), L-methionine (0.15+/-0.015), L-cystine (0.42+/-0.04), L-cysteine (1.1+/-0.07), L-isoleucine (1.1+/-0.09), L-glutamine (1.8+/-0.16) and L-valine (2.5+/-0.13). Lysine exit was trans-accelerated (approx. 20 fold) by 2 mM L-lysine and L-leucine. The flux was resistant to pretreatment of the cells with p-chloromercuriphenylsulfonate (0.2 mM), which is an inhibitor of system y(+)L, the broad-spectrum and cation-modulated transporter.  相似文献   

20.
The rate of phosphorylation and dephosphorylation of smooth muscle myosin by myosin light chain kinase and by two myosin light chain phosphatases (gizzard phosphatase IV and aorta phosphatase) are measured in various conditions; the relationship between the rate of phosphorylation and dephosphorylation of myosin and the myosin conformation is also studied. The rate of dephosphorylation of myosin was completely inhibited in the presence of 1 mM MgCl2 and ATP at low ionic strength where phosphorylated myosin forms a folded conformation. The inhibition was released when myosin formed either an extended monomer or filaments. The rate of phosphorylation of myosin was also affected by the conformation of myosin. The rate for a folded myosin was slower than those for an extended monomer and filamentous myosin. The phosphorylation and dephosphorylation of heavy meromyosin, subfragment-1, and the isolated 20,000-dalton light chain are not inhibited at low ionic strength, and the rate of phosphorylation and dephosphorylation was decreased with increasing ionic strength. KCl dependence of the rate of phosphorylation and dephosphorylation of myosin was normalized by using KCl dependence of subfragment-1, and it was found that the marked inhibition of the rate of phosphorylation and dephosphorylation of myosin is closely related to the change from an extended to a folded conformation of myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号