首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Durrant MC 《Biochemistry》2002,41(47):13934-13945
The properties of the Fe and Mo sites of the iron-molybdenum cofactor of nitrogenase with respect to binding and activation of N(2) have been studied by molecular mechanics calculations on the local protein environment and by density functional theory (DFT) calculations on subsections of the cofactor. The DFT calculations indicate that the homocitrate ligand of the cofactor can become monodentate on reduction, allowing N(2) to bind at Mo. In addition, the neighboring Fe atom plays a crucial role in N(2) reduction by stabilizing the initial reduced N(2) species and by facilitating cleavage of the N-N bond. The various possible isomers for partially reduced N(2) intermediates have been compared by DFT, and a detailed model for the reduction of N(2) is developed based on these results, together with chemical precedents and the available biochemical data for nitrogenase.  相似文献   

2.
Durrant MC 《Biochemistry》2002,41(47):13946-13955
Quantum calculations have been used to examine the energetics of the reactions of diazene and isodiazene with H(2) and the properties of the Fe and Mo sites of the nitrogenase iron-molybdenum cofactor with respect to the binding of H and H(2). The results have been used to extend the model for N(2) reduction by nitrogenase given in the preceding paper to describe the formation of HD from D(2). The proposed mechanism for HD formation invokes a combination of two well-established chemical reactions, namely, competitive protonation of metal N(2) species at either the metal or at N(2), followed by scrambling of D(2) at a metal hydride. The model is evaluated against the available biochemical data for the nitrogenase HD formation reaction and extended to account for H(2) inhibition of N(2) reduction and the reduction of H(+) in the absence of other substrates.  相似文献   

3.
Substrate interactions with nitrogenase: Fe versus Mo   总被引:2,自引:0,他引:2  
Seefeldt LC  Dance IG  Dean DR 《Biochemistry》2004,43(6):1401-1409
Biological nitrogen reduction is catalyzed by a complex two-component metalloenzyme called nitrogenase. For the Mo-dependent enzyme, the site of substrate reduction is provided by a [7Fe-9S-Mo-X-homocitrate] metallocluster, where X is proposed to be an N atom. Recent progress with organometallic model compounds, theoretical calculations, and biochemical, kinetic, and biophysical studies on nitrogenase has led to the formulation of two opposing models of where N(2) or alternative substrates might bind during catalysis. One model involves substrate binding to the Mo atom, whereas the other model involves the participation of one or more Fe atoms located in the central region of the metallocluster. Recently gathered evidence that has provided the basis for both models is summarized, and a perspective on future research in resolving this fundamental mechanistic question is presented.  相似文献   

4.
Nitrite, a new substrate for nitrogenase   总被引:1,自引:0,他引:1  
We have examined the reactivity of the purified component proteins of Azotobacter vinelandii nitrogenase (Av1 and Av2) toward nitrate and nitrite. Nitrate has no effect on H2 evolution or C2H2 reduction by nitrogenase and thus is neither a substrate nor an inhibitor. Nitrite dramatically inhibits H2 evolution. This inhibition has two components, one irreversible and one reversible upon addition of CO. The irreversible inhibition is due to nitrite inactivation of the Fe protein. The rate of this inactivation is greatly enhanced by addition of MgATP, suggesting the [4Fe-4S] cluster is the site of nitrite attack. The reversible inhibition does not represent an inhibition of electron flow but rather a diversion of electrons away from H2 evolution and into the six-electron reduction of nitrite to ammonia. Thus, nitrogenase functions as a nitrite reductase.  相似文献   

5.
Fifty years after a role of vanadium in biological fixation was proposed, it was shown that in addition to their well-characterized molybdendum nitrogenases, Azotobacter chroococcum and Azotobacter vinelandii both have a genetically distinct nitrogenase system in which the conventional molybdoprotein is replaced by a vanadoprotein. Both Mo-nitrogenases and V-nitrogenases have similar requirements for activity: MgATP, a low potential reductant and the absence of oxygen. The genes encoding the V-nitrogenase are expressed only under conditions of Mo-deficiency. V-Nitrogenase of A.chroococcum is made up of a tetrameric VFe protein (Mr 210,000) with an alpha 2 beta 2 structure containing two V atoms, 23 Fe atoms and 20 acid-labile sulphide atoms per tetramer, and a dimeric Fe protein (Mr 64,000) with a gamma 2 structure containing four Fe atoms and four acid-labile sulphide atoms per dimer. Vanadium K-edge X-ray absorption spectroscopy indicates that V in the VFe protein, like Mo in MoFe protein, has S, Fe and possibly O as nearest neighbours. A vanadium- and iron-containing cofactor (FeVaco) can be extracted from the VFe protein and will restore C2H2 reductase, but no nitrogenase activity, to the inactive MoFe protein accumulated by mutants unable to synthesize the molybdenum- and iron-containing co-factor of Mo-nitrogenase. The products of C2H2 reduction by the hybrid protein (C2H6 as well as C2H4) are a characteristic of the VFe protein and provide evidence that FeVaco is, or forms part of the active site of V-nitrogenase.  相似文献   

6.
19F NMR and x-ray absorption experiments have been performed with both the isolated FeMo cofactor and the MoFe protein of nitrogenase in search of direct evidence for substrate or inhibitor binding. Using 19F NMR as a probe and p-CF3C6H4S- as the receptor ligand, the data show that the nitrogenase inhibitors CN- and CH3NC bind to the isolated FeMo cofactor-RFS- complex in N-methylformamide with a finite formation constant. Their binding increases the electronic relaxation time of the complex and increases the life-time of the FeMo cofactor-p-CF3C6H4S- bond, Parallel molybdenum K edge and extended x-ray absorption fine structure experiments show that CH3NC does not bind to molybdenum. Although CO and N3- both relieve CN- and CH3NC inhibition of electron flow through nitrogenase, unlike the latter, they do not appear to bind to isolated FeMo cofactor. In experiments with the dithionite-reduced MoFe protein, we did not detect any changes in the molybdenum K edge or extended x-ray absorption fine structure spectra upon addition of CO, N2, C2H2, NaCN, CH3NC, or azide demonstrating that either these substrates and inhibitors do not bind to molybdenum or that the FeMo cofactor site of nitrogenase is inaccessible to substrate binding except under turnover conditions.  相似文献   

7.
A mutant UW3, which is unable to fix N2 in the presence of Mo (Nif-) but can undergo phenotypic reversal to Nif+ under Mo deficient conditions, was able to grow in Cr containing but Mo and NH3 deficient medium. A partly purified nitrogenase component Ⅰ protein obtained from UW3 grown on the Cr containing medium was shown to contain Fe and Cr (atom ratio of Fe to Cr and Mo to Cr: 11.60 and 0.41) and to have 70% of the C2H2 and H+ reduction activity of MoFe protein from the wild type strain of Azotobacter vinelandii Lipmann. The Cr containing protein was different in subunit composition from that of MnFe protein purified from the mutant strain grown in the presence of Mn, but similar to that of MoFe protein, that is, it was a tetramer composed of two differentsubunits (α2β2). The preliminary results indicated that the Cr containing protein might be a nitrogenase component Ⅰ protein.  相似文献   

8.
Dance I 《Biochemistry》2006,45(20):6328-6340
The migration of H atoms over S and Fe atoms in the reaction domain of FeMo-co, the active site of nitrogenase, is described and used to explain mechanistic data on the catalyzed reductions of N(2) and C(2)H(2). After electron transfer to FeMo-co, H atoms are generated by fast proton supply to S3B (atom labels from structure 1M1N) and migrate vectorially via several pathways from S3B to locations on the FeMo-co face, specifically Fe6, S2B, Fe2, and S2A (calculated reaction profiles are reported). The E(n)H(n) reduction levels (n = 1-4) in the Thorneley-Lowe kinetic-mechanistic schemes are each potential sequences of substructures with different distributions of H atoms. The positions of H atoms influence the binding of substrates N(2) and C(2)H(2), and the bound substrate subsequently blocks further migration of H atoms past the binding site. This model provides a consistent structural interpretation of (a) the two-site reactivity of C(2)H(2) and the differentiation of the high- and low-affinity sites as due to different preparatory H migration; (b) the differing mutual inhibitions of N(2) and C(2)H(2) in wild-type protein; (c) the modified reactivity of the Azotobacter vinelandii alpha-(Gly)69(Ser) mutant with N(2) and C(2)H(2); and (d) the basis for the stereoselectivity of hydrogenation of C(2)D(2) and its loss in some mutant proteins. Some structures for initially bound N(2) and C(2)H(2), and their hydrogenated intermediates, are presented. The key new concept is that binding sites and binding states for substrates and intermediates are characterized not only by their locations on the FeMo-co face but also by the structural and temporal status of the distribution of H atoms over the FeMo-co reaction domain.  相似文献   

9.
 Reactivity studies of clusters that contain the MFe3S4 cores (M = Mo, V) with catecholate, multicarboxylate (or DMF) ligands coordinated to the Mo (or V) atoms, and Cl ligands coordinated to the Fe atoms have been carried out. These studies show the M/Fe/S single cubane clusters to be effective catalysts in the reduction of nitrogenase substrates such as hydrazine, acetylene and protons to give ammonia, ethylene and dihydrogen respectively. The same molecules do not activate or catalyze the reduction of dinitrogen. The results indicate that the observed catalyses are occurring at the Mo (V) sites by a process that, in the case of hydrazine, involves substrate protonation prior to reduction. The facile catalytic reduction of hydrazine by clusters that contain coordinatively saturated polycarboxylate-bound Mo atoms is rationalized in terms of a possible protonation/proton delivery function of the coordinated polycarboxylate ligands. The reactivity characteristics of the M/Fe/S clusters (structurally quite similar to the nitrogenase cofactor) have led to the suggestion that the Mo (V) atoms may be involved in the reduction of hydrazine in the later stages of dinitrogen reduction. Received and accepted: 21 August 1996  相似文献   

10.
Tolland JD  Thorneley RN 《Biochemistry》2005,44(27):9520-9527
Stopped-flow FTIR spectroscopy was used to monitor continuously the pre-steady- and steady-state phases of azide reduction by nitrogenase and the accompanying hydrolysis of ATP. This was characterized by a ca. 1.3 s lag phase that is explained by the number of Fe protein cycles required to effect the reductions of azide to N(2) + NH(3), N(2)H(4) + NH(3), or 3NH(3). Extrapolation of the steady-state time course for azide reduction to zero time showed that one azide binds within 200 ms to each FeMo cofactor. Inhibition of azide reduction by CO was established at times <400 ms, which was faster than the appearance of the first observable IR band assigned to CO (1904 cm(-)(1) detectable at ca. 1 s with maximum amplitude at ca. 7 s). IR bands associated with the rapidly formed (<400 ms) CO species that inhibits azide reduction were not observed over the range 1700-2100 cm(-)(1). This suggests either that the CO is initially bridging two or more Fe atoms or that a rapid reduction of CO to a formyl state occurs by insertion into a metal-hydride bond. The frequencies and time courses for the appearance and loss of the CO bands under hi- and lo-CO conditions were essentially unaffected by the presence of 20 mM azide, consistent with CO being a noncompetitive inhibitor of azide reduction and with azide and CO binding to different sites on the FeMo cofactor.  相似文献   

11.
A convenient and rapid method of obtaining the cofactor of nitrogenase (FeMoco) with a low and apparently limiting Fe/Mo ratio has been developed. FeMoco can be extracted from the MoFe protein bound to DEAE-cellulose. The cofactor is eluted in either N-methylformamide (NMF), N,N-dimethylformamide (DMF), or mixtures of these solvents by use of salts such as Et4NBr,Bu4NBr,Ph4PCl, and Ph4AsCl. The method is simple, is rapid (45 min), yields concentrated cofactor, and, unlike the original method [Shah, V. K., & Brill, W. J. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3249-3253] which requires anaerobic centrifugation, is easily scaled up. Furthermore, it gives yields of cofactor in excess of 70%. Its disadvantages are a high Fe:Mo ratio when DMF is the extracting solvent and a high salt concentration in the resultant FeMoco solution. These disadvantages are easily overcome by removing excess Fe by pretreating the cofactor with bipyridyl while still on the column. This gives Fe:Mo ratios of (6 +/- 1):1 (11 trials) with specific activities ranging from 170 to 220 nmol of C2H4/[min.(nmol of Mo)]. Chromatography on Sephadex LH-20 removes ca. 99% of the excess salt. The adsorption of MoFe protein to DEAE-cellulose seems to facilitate denaturation by organic solvents so that pretreatment of the protein with acid, used in earlier methods, is unnecessary. There is an apparent dependence on the charge density of the anion employed for elution of FeMoco bound to DEAE-cellulose, such that Cl- greater than Br- much greater than I-, PF6- is the order of effectiveness of the Bu4N+ salts of these anions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The nitrogenase metalloenzyme family, essential for supplying fixed nitrogen to the biosphere, is one of life's key biogeochemical innovations. The three forms of nitrogenase differ in their metal dependence, each binding either a FeMo‐, FeV‐, or FeFe‐cofactor where the reduction of dinitrogen takes place. The history of nitrogenase metal dependence has been of particular interest due to the possible implication that ancient marine metal availabilities have significantly constrained nitrogenase evolution over geologic time. Here, we reconstructed the evolutionary history of nitrogenases, and combined phylogenetic reconstruction, ancestral sequence inference, and structural homology modeling to evaluate the potential metal dependence of ancient nitrogenases. We find that active‐site sequence features can reliably distinguish extant Mo‐nitrogenases from V‐ and Fe‐nitrogenases and that inferred ancestral sequences at the deepest nodes of the phylogeny suggest these ancient proteins most resemble modern Mo‐nitrogenases. Taxa representing early‐branching nitrogenase lineages lack one or more biosynthetic nifE and nifN genes that both contribute to the assembly of the FeMo‐cofactor in studied organisms, suggesting that early Mo‐nitrogenases may have utilized an alternate and/or simplified pathway for cofactor biosynthesis. Our results underscore the profound impacts that protein‐level innovations likely had on shaping global biogeochemical cycles throughout the Precambrian, in contrast to organism‐level innovations that characterize the Phanerozoic Eon.  相似文献   

13.
A comparison of the effect of temperature on the reduction of N2 by purified molybdenum nitrogenase and vanadium nitrogenase of Azotobacter chroococcum showed differences in behaviour. As the assay temperature was lowered from 30 degrees C to 5 degrees C N2 remained an effective substrate for V nitrogenase, but not Mo nitrogenase, since the specific activity for N2 reduction by Mo nitrogenase decreased 10-fold more than that of V nitrogenase. Activity cross-reactions between nitrogenase components showed the enhanced low-temperature activity to be associated with the Fe protein of V nitrogenase. The lower activity of homologous Mo nitrogenase components, although dependent on the ratio of MoFe protein to Fe protein, did not equal that of V nitrogenase even under conditions of high electron flux obtained at a 12-fold molar excess of Fe protein.  相似文献   

14.
Nitrogenase catalyzes the MgATP-dependent reduction of dinitrogen gas to ammonia. In addition to the physiological substrate, nitrogenase catalyzes reduction of a variety of other multiply bonded substrates, such as acetylene, nitrous oxide, and azide. Although carbon monoxide (CO) is not reduced by nitrogenase, it is a potent inhibitor of all nitrogenase catalyzed substrate reductions except proton reduction. Here, we present kinetic parameters for an altered Azotobacter vinelandii MoFe protein for which the alphaGly(69) residue was substituted by serine (Christiansen, J., Cash, V. L., Seefeldt, L. C., and Dean, D. R. (2000) J. Biol. Chem. 275, 11459-11464). For the wild type enzyme, CO and acetylene are both noncompetitive inhibitors of dinitrogen reduction. However, for the alphaSer(69) MoFe protein both CO and acetylene have become competitive inhibitors of dinitrogen reduction. CO is also converted from a noncompetitive inhibitor to a competitive inhibitor of acetylene, nitrous oxide, and azide reduction. These results are interpreted in terms of a two-site model. Site 1 is a high affinity acetylene-binding site to which CO also binds, but dinitrogen, azide, and nitrous oxide do not bind. This site is the one primarily accessed during typical acetylene reduction assays. Site 2 is a low affinity acetylene-binding site to which CO, dinitrogen, azide, and nitrous oxide also bind. Site 1 and site 2 are proposed to be located in close proximity within a specific 4Fe-4S face of FeMo cofactor.  相似文献   

15.
Klebsiella pneumoniae nitrogenase exhibited four new electron-paramagnetic-resonance signals during turnover at 10 degrees C, pH7.4, which were assigned to intermediates present in low concentrations in the steady state. 57Fe-substituted Mo--Fe protein showed that they arose from Fe--S clusters in the Mo--Fe protein of nitrogenase. The new signals are designated: Ic, g values at 4.67, 3.37 and approx. 2.0; VI, g values at 2.125, 2.000 and 2.000; VII, g values at 5.7 and 5.4; VIII, g values at 2.092, 1.974 and 1.933. The sharp axial signal VI arises from a Fe4S4 cluster at the --1 oxidation level. This signal was only detected in the presence of ethylene and provides the first evidence of an enzyme--product complex for nitrogenase. [13C]Acetylene and [13C]ethylene provided no evidence for direct binding of this substrate and product to the Fe--S clusters giving rise to these signals. The dependence of signal intensities on acetylene concentration indicated two types of binding site, with apparent dissociation constants K less than 16 micron and K approximately 13mM. A single binding site for ethylene (K=1.5mM) was detected. A scheme is proposed for the mechanism of reduction of acetylene to ethylene and inhibition of this reaction by CO.  相似文献   

16.
Carbon monoxide inhibits reduction of dinitrogen (N2) by purified nitrogenase from Azotobacter vinelandii and Clostridium pasteurianum in a noncompetitive manner (Kii and Kis = 1.4 X 10(-4) and 4.5 X 10(-4) and 7 X 10(-4) atm and 14 X 10(-4) atm for the two enzymes, respectively). The onset of inhibition is within the turnover time of the enzyme, and CO does not affect the electron flux to the H2-evolving site. The kinetics of CO inhibition of N2 reduction are simple, but CO inhibition of acetylene reduction is complicated by substrate inhibition effects. When low-temperature (approximately 13 K) electron paramagnetic resonance (EPR) spectra of CO-inhibited nitrogenase are examined, it is found that low concentrations of CO ([CO] = [enzyme]) induce the appearance of a signal with g values near 2.1, 1.98, and 1.92 with t1/2 approximately 4 s, while higher concentrations of CO lead to the appearance of a signal with g values near 2.17, 2.1, and 2.05 with a similar time course. The MoFe proteins from Rhizobium japonicum and Rhodospirillum rubrum, reduced with Azotobacter Fe protein in the presence of CO, give similar results. Under conditions which promote the accumulation of H2 in the absence of CO, an additional EPR signal with g values near 2.1, 2.0, and 1.98 is observed. The use of Azotobacter nitogenase components enriched selectively with 57Fe or 95Mo, as well as the use of 13CO, permitted the assignment of the center(s) responsible for the induced signals. Only 57Fe, when present in the MoFe protein, yielded broadened EPR signals. It is suggested that the MoFe protein of nitrogenase contains one or more iron-sulfur clusters of the type found in the simple ferrodoxins. It is further proposed that the CO-induced signals arise from states of the MoFe protein in which CO inhibits electron flow to the N2-reducing site so that the iron-sulfur cluster achieves steady-state net charges of -1 (high CO complex) and -3 (low CO complex) in analogy to the normal paramagnetic states of high-potential iron-sulfur proteins and ferredoxins, respectively. The "no-CO" signal may be either an additional center or the N2-reducing site with H2 bound competitively.  相似文献   

17.
Substitution of the MoFe protein alpha-70(Val) residue with Ala or Gly expands the substrate range of nitrogenase, allowing the reduction of larger alkynes, including propargyl alcohol (HC[triple bond]CCH(2)OH). Herein, we report characterization of the alpha-70(Val)(-->)(Ala) MoFe protein with propargyl alcohol trapped at the active site. The alpha-70(Ala) variant MoFe protein was rapidly frozen during reduction of propargyl alcohol, resulting in the conversion of the resting-state FeMo-cofactor EPR signal (S = 3/2 and g = [4.41, 3.60, 2.00]) to a new state (S = 1/2 and g = [2.123, 1.998, 1.986]). This EPR signal of the new state increased in intensity with increasing propargyl alcohol concentration, consistent with the binding of a single substrate. The EPR signal of the propargyl alcohol state showed temperature and microwave power dependencies markedly different from those of the classic FeMo-cofactor EPR signal, consistent with the difference in spin. The new state is analogous to that induced by the binding of the inhibitor CO ("lo CO" state) to FeMo-cofactor in the wild-type MoFe protein. The (13)C ENDOR spectrum of the alpha-70(Ala) MoFe protein with trapped (13)C-labeled propargyl alcohol exhibited three well-resolved (13)C doublets centered at the (13)C Larmor frequency with isotropic hyperfine couplings of approximately 3.2, approximately 1.4, and approximately 0.7 MHz, indicating that the alcohol (or a fragment) is coordinated to the cofactor. The results presented here localize the binding site of propargyl alcohol to one [4Fe-4S] face of FeMo-cofactor and indicate roles for the alpha-70(Val) residue in controlling FeMo-cofactor reactivity.  相似文献   

18.
CO dehydrogenase (EC 1.2.99.2) catalyzes the oxidation of CO according to the following equation: CO + H2O-->CO2 + 2 e- + 2 H+. It is a selenium-containing molybdo-iron-sulfur-flavoenzyme, which has been crystallized and structurally characterized in its oxidized state from the aerobic CO utilizing bacteria Oligotropha carboxidovorans and Hydrogenophaga pseudoflava. Both CO dehydrogenase structures show only minor differences, and the enzymes are dimers of two heterotrimers. Each heterotrimer is composed of a molybdoprotein, a flavoprotein, and an iron-sulfur protein. CO oxidation takes place at the molybdoprotein which contains a 1:1 mononuclear complex of molybdopterin-cytosine dinucleotide and a Mo-ion, along with a catalytically essential S-selanylcysteine. The latter is appropriately positioned in the SeMo-active site by a unique VAYRCSFR active site loop. In H. pseudoflava the arginine preceeding the cysteine in the active site loop is modified to a Cgamma-hydroxy arginine residue which has no obvious function. The substituents in the first coordination sphere of the Mo-ion are the enedithiolate sulfur atoms of the molybdopterin-cytosine dinucleotide, two oxo- and a sulfido-group. Extended X-ray absorption fine structure spectroscopy (EXAFS), along with the crystal structure of CO dehydrogenase (23.2 U mg(-1)) at 1.85 A resolution, have identified a sulfur atom at 2.3 A from the Mo-ion. The sulfur reacts with cyanide yielding thiocyanate. The corresponding inactive desulfo-CO dehydrogenase shows a typical desulfo inhibited-type of Mo-electron paramagnetic resonance (EPR) spectrum. Structural changes at the SeMo-site during catalysis are suggested by the Mo to Se distance of 3.7 A and the Mo-S-Se angle of 113 degrees in the oxidized enzyme which increase to 4.1 A, and 121 degrees, respectively, in the reduced enzyme. The intramolecular electron transport chain in CO dehydrogenase involves the following prosthetic groups and minimal distances: CO-->[Mo of the molybdenum cofactor] - 14.6 A - [2Fe-2S]I - 12.4 A - [2Fe-2S]II - 8.7 A - [FAD].  相似文献   

19.
The in vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase requires homocitrate (2-hydroxy-1,2,4-butanetricarboxylic acid). Homocitrate is apparently synthesized by the nifV gene product. In the absence of homocitrate, no FeMo-co is formed in vitro, as determined from coupled C2H2 reduction assays and the lack of 99Mo label incorporation into apodinitrogenase. Several organic acids were tested for their ability to replace homocitrate in the FeMo-co synthesis system. With appropriate homocitrate analogues, aberrant forms of FeMo-co are synthesized that exhibit altered substrate specificity and inhibitor susceptibility. Homoisocitrate (1-hydroxy-1,2,4-butanetricarboxylic acid) and 2-oxoglutarate facilitated the incorporation of 99Mo into apodinitrogenase in the FeMo-co synthesis system, yielding a dinitrogenase that effectively catalyzed the reduction of protons but not C2H2 or N2. Citrate also promoted the incorporation of 99Mo into apodinitrogenase, and the resulting holodinitrogenase reduced protons and C2H2 effectively but not N2. In addition, proton reduction from this enzyme was inhibited by CO. The properties of the homodinitrogenase formed in the presence of citrate were reminiscent of those of the Klebsiella pneumoniae NifV- dinitrogenase. We also observed low rates of HD formation from NifV- dinitrogenase compared to those from the wild-type enzyme. No HD formation was observed with the dinitrogenase activated in vitro in the presence of citrate. We propose that in vivo NifV- mutants utilize citrate for FeMo-co synthesis.  相似文献   

20.
When the iron-molybdenum cofactor (FeMoco) was extracted from the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae and combined with the FeMoco-deficient MoFe protein from a nifB mutant, the resultant MoFe protein exhibited the NifV phenotype, i.e. in combination with wild-type Fe protein it exhibited poor N2-fixation activity and its H2-evolution activity was inhibited by CO. These data provide strong evidence that FeMoco contains the active site of nitrogenase. The metal contents and e.p.r. properties of FeMoco from wild-type and nifV mutants of K. pneumoniae are very similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号