首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pur3 gene of the puromycin (pur) cluster from Streptomyces alboniger is essential for the biosynthesis of this antibiotic. Cell extracts from Streptomyces lividans containing pur3 had monophosphatase activity versus a variety of mononucleotides including 3'-amino-3'-dAMP (3'-N-3'-dAMP), (N6,N6)-dimethyl-3'-amino-3'-dAMP (PAN-5'-P) and AMP. This is in accordance with the high similarity of this protein to inositol monophosphatases from different sources. Pur3 was expressed in Escherichia coli as a recombinant protein and purified to apparent homogeneity. Similar to the intact protein in S. lividans, this recombinant enzyme dephosphorylated a wide variety of substrates for which the lowest Km values were obtained for the putative intermediates of the puromycin biosynthetic pathway 3'-N-3'-dAMP (Km = 1.37 mM) and PAN-5'-P (Km = 1.40 mM). The identification of this activity has allowed the revision of a previous proposal for the puromycin biosynthetic pathway.  相似文献   

3.
Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.  相似文献   

4.
5.
6.
7.
The effects of various surfactants on the activity and stability of the human adenosine A3 receptor (A3) were investigated. The receptor was expressed using stably transfected HEK293 cells at a concentration of 44 pmol functional receptor per milligram membrane protein and purified using over 50 different nonionic surfactants. A strong correlation was observed between a surfactant's ability to remove A3 from the membrane and the ability of the surfactant to remove A3 selectively relative to other membrane proteins. The activity of A3 once purified also correlates well with the selectivity of the surfactant used. The effects of varying the surfactant were much stronger than those achieved by including A3 ligands in the purification scheme. Notably, all surfactants that gave high efficiency, selectivity and activity fall within a narrow range of hydrophile-lipophile balance values. This effect may reflect the ability of the surfactant to pack effectively at the hydrophobic transmembrane interface. These findings emphasize the importance of identifying appropriate surfactants for a particular membrane protein, and offer promise for the development of rapid, efficient, and systematic methods to facilitate membrane protein purification.  相似文献   

8.
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.  相似文献   

9.
10.
The isocoumarins (1-50 microM) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin isolated from Paepalanthus bromelioides, were assessed for antioxidant activity using isolated rat liver mitochondria and non-mitochondrial systems, and compared with the flavonoid quercetin. The paepalantine and paepalantine dimers, but not vioxanthin, were effective at scavenging both 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) and superoxide (O(2)(-)) radicals in non-mitochondrial systems, and protected mitochondria from tert-butylhydroperoxide-induced H(2)O(2) accumulation and Fe(2+)-citrate-mediated mitochondrial membrane lipid peroxidation, with almost the same potency as quercetin. These results point towards paepalantine, followed by paepalantine dimer, as being a powerful agent affording protection, apparently via O(2)(-) scavenging, from oxidative stress conditions imposed on mitochondria, the main intracellular source and target of those reactive oxygen species. This strong antioxidant action of paepalantine was reproduced in HepG2 cells exposed to oxidative stress condition induced by H(2)O(2).  相似文献   

11.
The present study assesses the effects of 1-h anoxia and 3-h post-anoxia recovery period on the activity of pyruvate kinase (PK), 14CO2 produced from 14C-glucose and 14C-lactate, ATP, and glycogen levels in the jaw muscle of Chasmagnathus granulatus fed either a carbohydrate-rich (HC) or high-protein (HP) diet.In the HC control group the jaw muscle PK activity was higher than in HP-fed crabs. In jaw muscle from control HP-fed crabs the lactate oxidation was higher than in HC-fed animals. We observed increased PK activity and ATP concentration and a reduction in the glycogen concentration, 14CO2 production from 14C-lactate in HP-fed crab jaw muscle during anoxia. In crabs fed an HC diet the PK activity decreased in anoxia, the 14CO2 production from 14C-glucose increased, and the 14CO2 production from 14C-lactate did not change.During recovery, a low oxidation capacity for lactate was found in jaw muscle of both dietary groups. PK activity and 14CO2 production from 14C-glucose were high during the recovery period only in the jaw muscle from HP-fed crabs.Recovery decreased the ATP concentration of both dietary groups as compared to anoxia and normoxia, and did not restore the glycogen concentration in the jaw muscle.  相似文献   

12.
NaF mimicked the activation by thyrotropin of iodide binding to proteins and of glucose C-I oxidation but not the accumulation of intracellular colloid droplets or the stimulation of secretion in dog thyroid slices in vitro. On the contrary, NaF inhibited the two latter thyrotropin effects. The inhibitory action of F was partially relieved by the addition of glucose to the medium; it was mimicked by sodium oxamate. These data suggest that NaF depresses the endocytosis of colloid and thyroid secretion by inhibiting aerobic glycolysis in the follicular cell. NaF inhibited the activation of colloid droplet accumulation and secretion by N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) and the accumulation of cyclic AMP in thyrotropin-stimulated slices. This suggests an inhibition at the level of both cyclic AMP accumulation and cyclic AMP action. The inhibition by NaF and sodium oxamate of colloid droplet formation and thyroid secretion but not of glucose C-I oxidation in stimulated slices further confirms our conclusion that the latter effect is not merely a consequence of the activation by thyrotropin of colloid endocytosis.  相似文献   

13.
14.
Kim MK  Min do S  Park YJ  Kim JH  Ryu SH  Bae YS 《FEBS letters》2007,581(9):1917-1922
We investigated the expression of formyl peptide receptor (FPR) and its functional role in human bone marrow-derived mesenchymal stem cells (MSCs). We analyzed the expression of FPR by using ligand-binding assay with radio-labeled N-formyl-met-leu-phe (fMLF), and found that MSCs express FPR. FMLF stimulated intracellular calcium increase, mitogen-activated protein kinases activation, and Akt activation, which were mediated by G(i) proteins. MSCs were chemotactically migrated to fMLF. FMLF-induced MSC chemotaxis was also completely inhibited by pertussis toxin, LY294002, and PD98059, indicating the role of G(i) proteins, phosphoinositide 3-kinase, and extracellular signal regulated protein kinase. N-terminal fragment of annexin-1, Anx-1(2-26), an endogenous agonist for FPR, also induced chemotactic migration of MSCs. Thus MSCs express functional FPR, suggesting a new (patho)physiological role of FPR and its ligands in regulating MSC trafficking during induction of injured tissue repair.  相似文献   

15.
Mamczur P  Rakus D  Gizak A  Dus D  Dzugaj A 《FEBS letters》2005,579(7):1607-1612
In skeletal muscles, FBPase-aldolase complex is located on alpha-actinin of the Z-line. In the present paper, we show evidence that stability of the complex is regulated by calcium ions. Real time interaction analysis, confocal microscopy and the protein exchange method have revealed that elevated calcium concentration decreases association constant of FBPase-aldolase and FBPase-alpha-actinin complex, causes fast dissociation of FBPase from the Z-line and slow accumulation of aldolase within the I-band and M-line. Therefore, the release of Ca2+ during muscle contraction might result, simultaneously, in the inhibition of glyconeogenesis and in the acceleration of glycolysis.  相似文献   

16.
Terminal residues in SecA, the dimeric ATPase motor of bacterial preprotein translocase, were proposed to be required for function and dimerization. To test this, we generated truncation mutants of the 901aa long SecA of Escherichia coli. We now show that deletions of carboxy-terminal domain (CTD), the extreme CTD of 70 residues, or of the N-terminal nonapeptide or of both, do not compromise protein translocation or viability. Deletion of additional C-terminal residues upstream of CTD compromised function. Functional truncation mutants like SecA9-861 are dimeric, conformationally similar to SecA, fully competent for nucleotide and SecYEG binding and for ATP catalysis. Our data demonstrate that extreme terminal SecA residues are not essential for SecA catalysis and dimerization.  相似文献   

17.
Aranovich A  Parola AH  Fishov I 《FEBS letters》2007,581(23):4439-4442
DnaA(L366K), in concert with a wild-type DnaA (wtDnaA) protein, restores the growth of Escherichia coli cells arrested in the absence of adequate levels of cellular acidic phospholipids. In vitro and in vivo studies showed that DnaA(L366K) alone does not induce the initiation of replication, and wtDnaA must also be present. Hitherto the different behavior of wt and mutant DnaA were not understood. We now demonstrate that this mutant may be activated at significantly lower concentrations of acidic phospholipids than the wild-type protein, and this may explain the observed growth restoration in vivo.  相似文献   

18.
Nine species from the genus Stachys L. representing subgenera Stachys and Betonica were surveyed for flavonoid glycosides by means of HPLC coupled to diode-array detection and LC-APCI-MS. Those species belonging to subgenus Betonica were characterised by the presence of glycosides of tricetin methyl ethers, including a new derivative, which was isolated from S. scardica Griseb. and identified as tricetin 3',4',5' -trimethyl ether 7-O-beta-glucopyranoside by spectroscopic methods. This type of flavonoid was absent from species belonging to subgenus Stachys and can be considered as a chemosystematic marker for subgenus Betonica.  相似文献   

19.
20.
To link conformational transitions noted for DNA polymerases with kinetic results describing catalytic efficiency and fidelity, we investigate the role of key DNA polymerase beta residues on subdomain motion through simulations of five single-residue mutants: Arg-283-Ala, Tyr-271-Ala, Asp-276-Val, Arg-258-Lys, and Arg-258-Ala. Since a movement toward a closed state was only observed for R258A, we suggest that Arg(258) is crucial in modulating motion preceding chemistry. Analyses of protein/DNA interactions in the mutant active site indicate distinctive hydrogen bonding and van der Waals patterns arising from compensatory structural adjustments. By comparing closed mutant complexes with the wild-type enzyme, we interpret experimentally derived nucleotide binding affinities in molecular terms: R283A (decreased), Y271A (increased), D276V (increased), and R258A (decreased). Thus, compensatory interactions (e.g., in Y271A with adjacent residues Phe(272), Asn(279), and Arg(283)) increase the overall binding affinity for the incoming nucleotide although direct interactions may decrease. Together with energetic analyses, we predict that R258G might increase the rate of nucleotide insertion and maintain enzyme fidelity as R258A; D276L might increase the nucleotide binding affinity more than D276V; and R283A/K280A might decrease the nucleotide binding affinity and increase misinsertion more than R283A. The combined observations regarding key roles of specific residues (e.g., Arg(258)) and compensatory interactions echo the dual nature of polymerase active site, namely versatility (to accommodate various basepairs) and specificity (for preserving fidelity) and underscore an organized but pliant active site essential to enzyme function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号