首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐diversity mixtures of native tallgrass prairie vegetation should be effective biomass feedstocks because of their high productivity and low input requirements. These diverse mixtures should also enhance several of the ecosystem services provided by the traditional monoculture feedstocks used for bioenergy. In this study, we compared biomass production, year‐to‐year variation in biomass production, and resistance to weed invasion in four prairie biomass feedstocks with different diversity: one species – a switchgrass monoculture; five species – a mix of C4 grasses; 16 species – a mix of grasses, forbs, and legumes; and 32 species – a mix of grasses, forbs, legumes, and sedges. Each diversity treatment was replicated four times on three soil types for a total of 48 research plots (0.33–0.56 ha each). We measured biomass production by harvesting all plant material to ground level in ten randomly selected quadrats per plot. Weed biomass was measured as a subset of total biomass. We replicated this design over a five‐year period (2010–2014). Across soil types, the one‐, 16‐, and 32‐species treatments produced the same amount of biomass, but the one‐species treatment produced significantly more biomass than the five‐species treatment. The rank order of our four diversity treatments differed between soil types suggesting that soil type influences treatment productivity. Year‐to‐year variation in biomass production did not differ between diversity treatments. Weed biomass was higher in the one‐species treatment than the five‐, 16‐, and 32‐species treatments. The high productivity and low susceptibility to weed invasion of our 16‐ and 32‐species treatments supports the hypothesis that high‐diversity prairie mixtures would be effective biomass feedstocks in the Midwestern United States. The influence of soil type on relative feedstock performance suggests that seed mixes used for biomass should be specifically tailored to site characteristics for maximum productivity and stand success.  相似文献   

2.
Symbiotic associations between plants and arbuscular mycorrhizal fungi are ubiquitous and ecologically important in many grasslands. Differences in species responses to mycorrhizal colonization can have a significant influence on plant community structure. The growth responses of 36 species of warm- and cool-season tallgrass prairie grasses and 59 tallgrass prairie forbs to arbuscular mycorrhizal (AM) fungal colonization were assessed in greenhouse studies to examine the extent of interspecific variation in host-plant benefit from the symbiosis and patterns of mycorrhizal dependence among host plant life history (e.g., annual, perennial) and taxonomic (e.g., grass, forb, legume, nonlegume) groups and phenological guilds. There was a strong and significant relationship between phenology of prairie grasses and mycorrhizal responsiveness, however this relationship was less apparent in forbs. Perennial warm-season C(4) grasses and forbs generally benefited significantly from the mycorrhizal symbiosis, whereas biomass production of the cool-season C(3) grasses was not affected. The root systems of the cool-season grasses were also less highly colonized by the AM fungi, as compared to the warm-season grasses or forbs. Unlike the native perennials, annuals were generally not responsive to mycorrhizal colonization and were lower in percentage root colonization than the perennial species. Plant growth responsiveness and AM root colonization were positively correlated for the nonleguminous species, with this relationship being strongest for the cool-season grasses. In contrast, root colonization of prairie legumes showed a significant, but negative, relationship to mycorrhizal growth responsiveness.  相似文献   

3.
The Central Valley of California is noted for its dearth of remnant native grass populations and for low native grass seedling establishment within grasslands now dominated by non‐native annual species. In contrast, remnant populations are common along the coast, and studies have shown an ability for seedlings and adults to compete with non‐native annual grasses. The invasibility of well‐established populations of native grasses in the Central Valley remains unclear. The objectives of this study were to compare the invasibility of native grasses differing in density and species composition and, given the species in this study, to assess the ability of mixes with greater species richness to resist invasion relative to their abilities in monoculture. In the Sacramento Valley of California, six species of native grasses were planted at three densities in monospecific and mixed‐species plots. Percent cover of native perennial and non‐native annual grasses was measured in years 2 and 3, and biomass was sampled in year 5. Native grass biomass and, to a lesser extent, species composition were important in explaining variation in non‐native grass invasibility in the fifth year. Species‐rich treatments did not experience less invasion than would be expected by the proportional invasibility of each species in monoculture. However, invasibility of plots consisting of slower growing, shorter statured species decreased over time, suggesting a successional benefit to diverse communities. This study demonstrates that established stands of native grasses in the Sacramento Valley can resist invasion by non‐native annual grasses and that stand biomass is a particularly important factor in determining invasibility.  相似文献   

4.
Many early attempts at tallgrass prairie reconstruction failed to achieve the high species diversity of remnant prairies, and instead consist primarily of C4 grasses. We hypothesized that frequent mowing of established prairie grasses could create sufficient gaps in the aboveground and belowground environment to allow for the establishment of native forbs from seed. We studied forb seedling establishment in a 25‐year‐old prairie planting in northern Iowa that was dominated by native warm‐season grasses. In winter 1999, 23 species of native forbs were broadcast into the recently burned sod at a rate of 350 viable seeds/m2. Treatment plots were mowed weekly for either one or two growing seasons, and control plots were unmowed. Mowed plots had greater light availability than controls, especially when warm‐season grasses began to flower. Overwinter seedling mortality was 3% in mowed treatments compared to 29% in the controls. Forbs in mowed plots had significantly greater root and shoot mass than those in control plots in the first and second growing seasons but were not significantly more abundant. By the fourth growing season, however, forbs were twice as abundant in the mowed treatments. No lasting negative impacts of frequent mowing on the grass population were observed. Mowing a second year influenced species composition but did not change total seedling establishment. Experimental evidence is consistent with the idea that mowing reduced competition for light from large established grasses, allowing forb seedlings the opportunity to reach sufficient size to establish, survive, and flower in the second and subsequent years.  相似文献   

5.
Site preparation designed to exhaust the soil seedbank of adventive species can improve the success of tallgrass prairie restoration. Despite these efforts, increased rates of atmospheric nitrogen (N) deposition over the next century could potentially promote the growth of nitrophilic, adventive species in tallgrass restoration projects. We used a field experiment to examine how N addition affected species composition and plant productivity over the first 3 years of a tallgrass prairie restoration that was preceded by the planting of glyphosate‐resistant crops and multiple applications of glyphosate to exhaust the pre‐existing seedbank. We predicted that N addition would increase the percent cover of adventive plant species not included in the original seeding. Contrary to our prediction, only the cover of native species increased with N addition; native non‐leguminous forbs increased substantially, with Conyza canadensis (a weedy native species not part of the restoration seed mix) exploiting the combination of high N and bare ground in the first year, and non‐leguminous forbs (in particular Monarda fistulosa) and native C3 grasses, all of which were seeded, increasing with N addition by the third year. Native legumes was the only functional group that exhibited lower cover in N addition plots than in control plots. There was no significant response by native C4 grasses to N addition, and adventive grasses remained mostly absent from the plots. Overall, our results suggest that site pre‐treatment with herbicide may continue to be effective in minimizing adventive grasses in restored tallgrass prairie, despite future increases in atmospheric N deposition.  相似文献   

6.
Pollinators provide an important class of ecological services for crop plants and native species in many ecosystems, including the tallgrass prairie, and their conservation is essential to sustaining prairie remnants. In Iowa these remnants are typically either block-shaped or long, linear strips along transportation routes. In this study we examined differences in the butterfly, bee, and forb community composition in linear and block prairie remnants, determined correlations between species diversity among butterflies, bees and forbs in the 20 prairie remnants sampled, and examined correlations of community similarity among butterflies, bees and forbs. Correspondence analysis showed that distinct communities exist for butterflies and forbs in block versus linear sites and discriminant analysis showed that the bee and forb communities in block and linear sites can be distinguished on the basis of a few species. Diversity of one group was a poor predictor of diversity in another, except for a significant inverse relationship between bees and butterflies. These two pollinator taxa may be responding very differently to microhabitat components within fragmented ecosystems. Our studies show that there need to be differences in conservation strategies for bees and butterflies to maintain both pollinator communities.  相似文献   

7.
A fundamental goal of restoration is the re-establishment of plant diversity representative of native vegetation. However, many prairie restorations or Conservation Reserve Program sites have been seeded with warm-season grasses, leading to grass-dominated, low-diversity restorations not representative of native grasslands. These dominant grasses are strongly mycotrophic, while many subordinate forb species appear to be less dependent on mycorrhizal symbiosis. Therefore, manipulating arbuscular mycorrhizal fungi (AMF) may be useful in promoting establishment and growth of forb species in grass-dominated prairie restorations. To assess the potential role of mycorrhizae in affecting the productivity and community composition of restored tallgrass prairie, we conducted a 4-year field experiment on an 8-year-old grassland restoration at the Konza Prairie in northeastern Kansas, USA. At the initiation of our study, seeds of 12 forb species varying in degree of mycorrhizal dependence were added to established grass-dominated plots. Replicate plots were treated bi-weekly with a soil drench of fungicide (Topsin-M®) over four growing seasons and compared to non-treated control plots to assess the role of AMF in affecting plant species composition, productivity, leaf tissue quality, and diversity in restored tallgrass prairie. Topsin applications successfully reduced mycorrhizal colonization of grass roots to approximately 60–80% relative to roots in control plots. Four years of mycorrhizal suppression reduced productivity of the dominant grasses and increased plant species richness and diversity. These results highlight the importance of mycorrhizae as mediators of plant productivity and community dynamics in restored tallgrass prairie and indicate that temporarily suppressing AMF decreases productivity of the dominant C4 grasses and allows for establishment of seeded forb species.  相似文献   

8.
The goal of the study was to learn whether native prairie grasses and, eventually, a diverse mixture of native forbs could be incorporated in permanent pastures by means of rotational grazing by cattle. An experiment was established on a farm in northeastern Iowa on a pasture that had never been plowed but had been grazed since the 1880s. One treatment was protected from grazing to test for the presence of remnant vegetation. Andropogon gerardii, Sorghastrum nutans, Panicum virgatum, and Desmanthus illinoensis were introduced in plots first treated with glyphosate; seeds were either drilled (DR) or hand-broadcast and incorporated by controlled cattle trampling (BT). Seedling establishment and aboveground biomass were followed over 3 years. There was no evidence for remnant native plants on uplands, but seven species of native forbs and four native graminoids flowered in exclosures erected within waterways. D. illinoensis initially established up to 12 seedlings/m2 but had disappeared from all but one plot by the third year. Variation in native grass establishment among replicate plots within treatments was very high, ranging initially from 0.2 to 9.9 plants/m2. In August of the second year, native grasses made up only 8% of the available forage in DR plots and 1% of BT plots. One year later, however, native grasses made up 56% of the available forage in DR plots and 37% of BT plots, and these differences were significant (p = 0.05). A pilot study seeded in late winter (frost seeding) suggested that seeds spread after cattle trampling produced five times more seedlings (2.5/m2) than seeds spread before cattle trampling (0.5/m2). Frost seeding had advantages because it did not require herbicide for sod suppression or tractor access to the site. New plantings could be safely grazed in early spring and late fall, before and after most native grass growth, to offset the negative economic impact of protecting new plantings from burning during the growing season. But this practice precluded subsequent prescribed burning. I propose a strategy for incorporating native wildflowers into the pasture over time with minimum cost.  相似文献   

9.
Most prairie restorations fail to produce the diversity of species found in unplowed remnants. This lack of restored diversity is hypothesized to be partly due to the inhibition of forb species by high seeding densities of dominant grasses and partly due to the low seeding densities of forbs used in many restorations. We tested this hypothesis by sowing various densities of forb and warm-season grass seeds into a restoration begun on bare soil. This is the first replicated restoration experiment we are aware of that varies grass seeding densities to examine the effects on forbs. Four years after seeding, we found that higher densities of grass seeds decreased forb cover, biomass, and richness, and higher densities of forb seeds increased forb richness. These results suggest that dominant grasses compete strongly with native forb species and that many forb species thrive when they are spatially separated from dominant grasses. The results also suggest that seed availability limits the establishment of some forbs. Forb diversity can therefore be increased by decreasing grass seeding density, by increasing forb seeding density, or both. However, forb seeds are generally expensive, and increasing forb seeding density across the entire area of a restoration may be prohibitively expensive. We therefore recommend a low seeding density of dominant grasses, and we recommend spatially separating forbs from dominant grasses by adding most forb seeds to areas with little to no dominant grasses and by adding the rest of the forb seeds to areas with a low density of dominant grasses.  相似文献   

10.
A three season study was conducted to determine the effect of added composted yard waste, arbuscular mycorrhizal (AM) fungi, and fertilizer on plant cover, standing crop biomass, species composition, AM fungal infectivity and spore density in coarse taconite iron ore tailing plots seeded with a mixture of native prairie grasses. Plant cover and biomass, percent seeded species, mycorrhizal infectivity and spore density were greatly increased by additions of composted yard waste. After three seasons, total plant cover was also greater in plots with added fertilizer. Third season plant cover was also greater in plots amended with the higher rate (44.8 Mg ha–1) of compost than the moderate rate (22.4 Mg ha-1). Field inoculation with AM fungi also increased plant cover during the second season and infectivity during the first two seasons. Seeded native species, consisting mostly of the cover species Elymus canadensis, dominated plot vegetation during the second and third seasons. Dispersal of AM fungal propagules into nonmycorrhizal plots occurred rapidly and increased infectivity in compost-amended plots during the third season. In plots with less than 10% plant cover, AM fungal infectivity of inoculated plots was greatly reduced after the second season. The high level of plant cover and the trend of increasing proportion of mycorrhizal-dependent warm-season grasses, along with increases in infectivity, forecast the establishment of a sustainable native grass community that will meet reclamation goals.  相似文献   

11.
We examined the long-term success of prairie planting on a former strip mine in northeastern Illinois. The site was reclaimed and planted with prairie species in the 1970s. Total biomass increased over time, largely as a result of an increase in biomass of non-prairie species. Biomass of prairie species remained unchanged because of an increase in Panicum virgatum (switchgrass) offsetting decreases in Sorghastrum nutans (Indian grass). Total biomass was less than values published for other restored prairies (78 ± 4 g/m2to 298 ± 72 g/m2 for our site, as opposed to 302-489 g/m2 for the Trelease Prairie). Mycorrhizal inoculum potential (MIP) was variable across the site. There were also relatively few species of mycorrhizal fungi present as spores. Gigaspora sp., Scutellospora sp., Glomus sp., Glomus geosporum, and Glomus cf. fasciculatum were identified from spores. On a transect dominated by warm-season (C4) prairie grasses, MIP of rhizosphere soil collected under these species was lower than the MIP of rhizosphere soil collected under exotic cool-season (C3) grasses on a transect dominated by C3 species. On a transect with mixed warm-and cool-season vegetation, however, MIP did not differ under the two vegetation types. These results suggest that within-site patchiness rather than cover type is influencing MIP. Values of MIP were lower than those reported for native Illinois prairie.  相似文献   

12.
From 1992 to 1995 we experimentally evaluated the effectiveness of several revegetation treatments along a segment of Going-to-the-Sun Highway in Glacier National Park, U.S.A. This segment, reconstructed during the spring and summer of 1992, is bordered by fescue prairie vegetation and is known to be susceptible to invasion by several alien species, including Centaurea maculosa (spotted knapweed) and Phleum pratense (common timothy). We used a split plot study design to evaluate the effectiveness of herbicide and seeding treatments on assisting recovery of native flora and limiting the establishment of alien species. The herbicide treatment consisted of a yearly herbicide spray application of clopyralid (3,6-dichloropicolinic acid). Five seeding treatments were evaluated, three of which included an indigenous graminoid-forb seed mix. Percent canopy coverages of four species groups—alien graminoids, native graminoids, alien forbs, and native forbs—were determined in July 1995. In addition, community-level patterns in sprayed plots and unsprayed plots were compared with a reference site of native fescue prairie. Herbicide treatments decreased mean canopy coverage of alien forbs (treated = 4.2%, untreated = 23.4%) and increased mean canopy coverage of native graminoids slightly (treated = 6.3%, untreated = 4.0%). But herbicide treatments reduced mean coverage of native forbs (treated = 3.9%, untreated = 8.9%) and likely increased coverage of alien graminoids. Treatments that included a fall 1992 seed mix increased native graminoid coverages 2.8–4.6 times, although coverages were still lower than those attained by alien graminoids. Native and alien forb coverage appeared unaffected by seeding treatments. Species composition was less diverse in sprayed plots and more dominated by alien grasses than in unsprayed plots and the reference site. Areas for additional study are suggested, including seed bank assays to determine treatment effects on recruitment of alien versus native species and the use of native graminoids to create low-diversity communities with high canopy coverages to resist establishment of alien species.  相似文献   

13.
Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.  相似文献   

14.
15.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

16.
Best RJ 《Oecologia》2008,158(2):319-327
Increased resource availability can facilitate establishment of exotic plant species, especially when coincident with propagule supply. Following establishment, increased resource availability may also facilitate the spread of exotic plant species if it enhances their competitive abilities relative to native species. Exotic Canada geese (Branta canadensis) introduce both exotic grass seed and nutrients to an endangered plant community on the Gulf Islands of southwestern British Columbia, Canada. I used greenhouse experiments to assess the competitive advantage of the exotic grasses relative to native and exotic forbs in this community and to test the impacts of nutrient addition from goose feces on competitive outcomes. I grew experimental communities varying in their proportion of forbs versus exotic grasses, and added goose feces as a nutrient source. I found that both native and exotic forbs produced significantly more biomass in competition with conspecifics than in competition with the grasses, and that the proportional abundance of two out of three native forbs was lowest in the combined presence of exotic grasses and nutrient addition. In a second experiment, I found that in monoculture all species of forbs and grasses showed equal growth responses to nutrients. The exotic species did not convert additional nutrients into additional biomass at a higher rate, but did germinate earlier and grow larger than the native species regardless of nutrient availability. This suggests that the exotic species may have achieved their competitive advantage partly by pre-empting resources in community mixtures. Small and late-germinating native forbs may be particularly vulnerable to competitive suppression from exotic grasses and forbs and may be at an even greater disadvantage if their competitors are benefiting from early access to additional nutrients. In combination, the input of exotic propagules and additional nutrients by nesting geese may compromise efforts to maintain native community composition in this system.  相似文献   

17.
Dominant grasses can suppress subordinate species in grassland restorations. Examining factors that influence performance of a dominant grass when interacting with subordinate forbs may provide insights for maintaining plant community diversity. The objective of our study was to determine how soils of different restoration ages and functionally different forbs influence the performance (using biomass and tillering rate as proxies) of a dominant grass: Andropogon gerardii. Sites included a cultivated field and two restored prairies (4 or 16 years after restoration) at Konza Prairie (NE Kansas). We hypothesized A. gerardii performance would be greater in more degraded soils and when interacting with legumes. Soil structure, nutrient status, and microbial biomass were measured in soil that was used to conduct the plant interaction study. Andropogon gerardii performance was measured during an 18-week greenhouse experiment using the relative yield index calculated from net absolute tillering rate and final biomass measurements in three soil restoration age treatments combined with four interacting forb treatments. Restoration improved soil structure, reduced plant-available nutrients, and increased microbial biomass. Relative yield index values of A. gerardii were greater with non-legumes than legumes. Andropogon gerardii performed best in degraded soils, which may explain the difficulty in restoring tallgrass prairie diversity in long-term cultivated soil. Results from this study suggest practices that promote soil aggregation and fungal biomass, coupled with including a high abundance of legumes in seed mixes could reduce dominance of A. gerardii and likely increase plant diversity in tallgrass prairie restorations.  相似文献   

18.
Private lands provide critical habitat for threatened and endangered species, but only recently have farm-based conservation programs focused on at-risk, invertebrate species. The USDA Conservation Reserve Program State Acres for Wildlife Enhancement (CRP-SAFE) is one of the first federal programs to do so with a Wisconsin-based initiative for the US federally endangered Karner blue butterfly (KBB). This study is the first to evaluate how well the KBB-SAFE provides suitable habitat for the Karner and other butterflies. It also provides a critical foundation for better understanding the potential of new USDA programs that create pollinator habitat including for declining species such as the Monarch butterfly. Here we compare data (2009–2014) on assemblages of grassland communities, blooming floral resource availability, and abundance and richness of butterflies, between KBB-SAFE and native prairie sites. We found that KBB-SAFE and native sites had distinctly different forb species assemblages, with SAFE sites having fewer native blooming species available during the first flight of the KBB yet similar availability during second flight. Butterfly abundance was ultimately greater on native sites compared to SAFE sites, but richness was comparable between sites. We conclude that KBB-SAFE can provide habitat for many grassland species, and serve as surrogate KBB habitat. We provide straightforward management recommendations designed to better meet the needs of the Karner blue and other sensitive butterfly species and we provide further evidence that increased abundance and richness of native forbs and grasses on land formerly used for agriculture can provide habitat for butterflies adapted to early successional habitats.  相似文献   

19.
The effects of mycorrhizal symbiosis on seedling emergence, flowering and densities of several grasses and forbs were assessed in native tallgrass prairie and in sown garden populations at the Konza Prairie in northeastern Kansas. Mycorrhizal activity was experimentally suppressed with the fungicide benomyl. Flowering and stem densities of the cool-season grass, Dichanthelium oligosanthes, sedges (Carex spp.), and the forb Aster ericoides were higher in non-mycorrhizal (benomyl-treated) than in mycorrhizal plots and the magnitude of these differences was significantly affected by burning. Mycorrhizae significantly enhanced flowering of the warmseason grasses Andropogon gerardii and Sorghastrum nutans in burned prairie, but not in unburned sites. These patterns suggest that mycorrhizal effects on the dynamics of cool-season graminoid and forb populations are likely to be mediated indirectly through effects of the symbiosis on the competitive dominance of their neighbors. Seedling emergence rates of the cool-season C3 grasses Elymus canadensis and Koeleria cristata were significantly reduced in the benomyl-treated plots, whereas benomyl treatment had no significant effect on seedling emergence of the warm-season C4 grasses A. gerardii and Panicum virgatum. The forbs showed variable responses. Seedling emergence of Liatris aspera was greater under mycorrhizal conditions, but that of Dalea purpurea was unaffected by mycorrhizal treatment. These results show that effects of mycorrhizal symbiosis on the population dynamics of co-occurring prairie plants vary significantly both among species and among different life history stages within species. The results also indicate that mycorrhizas and fire interact to influence competitive interactions and demographic patterns of tallgrass prairie plant populations.  相似文献   

20.
Federal mandates to increase biofuel production in North America will require large new tracts of land with potential to negatively impact biodiversity, yet empirical information to guide implementation is limited. Because the temperate grassland biome will be a production hotspot for many candidate feedstocks, production is likely to impact grassland birds, a group of major conservation concern. We employed a multiscaled approach to investigate the relative importance of arthropod food availability, microhabitat structure, patch size and landscape‐scale habitat structure and composition as factors shaping avian richness and abundance in fields of one contemporary (corn) and two candidate cellulosic biomass feedstocks (switchgrass and mixed‐grass prairie) not currently managed as crops. Bird species richness and species density increased with patch size in prairie and switchgrass, but not in corn, and was lower in landscapes with higher forest cover. Perennial plantings supported greater diversity and biomass of arthropods, an important food for land birds, but neither metric was important in explaining variation in the avian community. Avian richness was higher in perennial plantings with greater forb content and a more diverse vegetation structure. Maximum bird species richness was commonly found in fields of intermediate vegetation density and grassland specialists were more likely to occur in prairies. Our results suggest that, in contrast to corn, perennial biomass feedstocks have potential to provide benefits to grassland bird populations if they are cultivated in large patches within relatively unforested landscapes. Ultimately, genetic improvement of feedstock genets and crop management techniques that attempt to maximize biomass production and simplify crop vegetation structure will be likely to reduce the value of perennial biomass plantings to grassland bird populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号