首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

2.
The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of Ca2+ was studied. At pH 6.0, 10 degrees C and in the absence of K+, the enzyme displays a very low velocity of ATP hydrolysis. Addition of up to 15% dimethyl sulfoxide increased this velocity severalfold (from 5-18 nmol of Pi X mg of protein-1 X h-1) and then decreased at higher solvent concentrations. Dimethyl sulfoxide increased both enzyme phosphorylation from ATP and the affinity for this substrate. Maximal levels of 1.0-1.2 nmol of EP X mg of protein-1 and apparent KM for ATP of 5 X 10(-6) M were obtained at a concentration of 30% dimethyl sulfoxide. The same preparation under optimal conditions (pH 7.5, 10 microM CaCl2, 100 mM KCl and no dimethyl sulfoxide at 37 degrees C) displays a velocity of ATP hydrolysis between 8 and 12 X 10(5) nmol of Pi X mg of protein-1 X h-1 while the phosphoenzyme levels varied between 3.5 and 4.0 nmol of EP X mg of protein-1. Enzyme phosphorylation from ATP in the absence of Ca2+ always preceded Pi liberation into the assay media. Two different phosphoenzyme species were formed which were kinetically distinguished by their decomposition rates. The observed steady-state velocity of ATP hydrolysis could be accounted for either by the decay of the fast component or by the simultaneous decomposition of both phosphoenzyme species. The hydrolysis of the phosphoenzyme formed in the absence of Ca2+ was KCl-stimulated and ADP-independent. The rate constant of breakdown was equal to that observed for the phosphoenzyme formed in the presence of Ca2+. It is suggested that the rapidly decaying phosphoenzyme (and possibly both rapidly and slowly decaying species) are intermediates in the reaction cycle of Mg2+-dependent ATP hydrolysis of sarcoplasmic reticulum Ca2+-ATPase and may represent a bypass of Ca2+ activation by dimethyl sulfoxide.  相似文献   

3.
The first step towards ATP synthesis by the Ca2-ATPase of sarcoplasmic reticulum is the phosphorylation of the enzyme by Pi. Phosphoenzyme formation requires both Pi and Mg2+. At 35 degrees C, the presence of a Ca2+ gradient across the vesicle membrane increases the apparent affinity of the ATPase for Pi more than 10-fold, whereas it had no effect on the apparent affinity for Mg2+. In the absence of a Ca2+ gradient, the phosphorylation reaction is inhibited by both K+ and Na+ at all Mg2+ concentrations used. However, in the presence of 1 mM Mg2+ and of a transmembrane Ca2+ gradient, the reaction is still inhibited by Na+, but the inhibition promoted by K+ is greatly decreased. When the Mg2+ concentration is raised above 2 mM, the enzyme no longer discriminates between K+ and Na+, and the phosphorylation reaction is equally inhibited by the two cations. Trifluoperazine, ruthenium red and spermidine were found to inhibit the phosphorylation reaction by different mechanisms. In the absence of a Ca2+ gradient, trifluoperazine competes with the binding to the enzyme of both Pi and Mg2+, whereas spermidine and ruthenium red were found to compete only with Mg2+. The data presented suggest that the enzyme has different binding sites for Mg2+ and for Pi.  相似文献   

4.
G Benaim  L de Meis 《FEBS letters》1989,244(2):484-486
In this report it is shown that organic solvents mimic the stimulatory effects of calmodulin and acidic phospholipids on the erythrocyte plasma membrane Ca2+-ATPase. The solvents used were dimethyl sulfoxide (20%, v/v), glycerol (20% v/v), ethylene glycol (20%, v/v) and polyethylene glycol (Mr 6000-8000) (10%, w/v). These solvents increased both the affinity for Ca2+ and the turnover number of the enzyme. The increase in Ca2+ affinity is additive to that achieved with calmodulin. The calcium cooperativity observed in the presence of calmodulin disappears after the addition of dimethyl sulfoxide to the medium. The present data support the proposal that activation of the erythrocyte plasma membrane Ca2+-ATPase is promoted by hydrophobic interactions along the enzyme molecule.  相似文献   

5.
Arsenate, an analogue of inorganic phosphate, causes an increase in the intrinsic fluorescence of the Ca(2+)-ATPase of sarcoplasmic reticulum membranes. This increase in fluorescence is observed regardless of whether Ca(2+)-loaded or leaky vesicles are assayed. The maximal fluorescence change (2-3%) is observed at pH 6.0 in the presence of Mg2+ and is abolished by the addition of micromolar Ca2+ concentrations. Dimethyl sulfoxide (20% v/v) increases the enzyme's affinity for arsenate one order of magnitude. It is concluded that arsenate, after binding, promotes the same conformational change of the enzyme as that produced by Pi.  相似文献   

6.
Reversal of the cycle of sarcoplasmic reticulum ATPase starts from ATPase phosphorylation by Pi, in the presence of Mg2+, and leads to ATP synthesis. We show here that ATP can also be synthesized when Ca2+ replaces Mg2+. In the absence of a calcium gradient and in the presence of dimethyl sulfoxide, ATPase phosphorylation from Pi and Ca2+ led to the formation of an unstable phosphoenzyme. This instability was due to a competition between the phosphorylation reaction induced by Pi and Ca2+ and the transition induced by Ca2+ binding to the transport sites, which led to a conformation that could not be phosphorylated from Pi. Dimethyl sulfoxide and low temperature stabilized the calcium phosphoenzyme, which under appropriate conditions, subsequently reacted with ADP to synthesize ATP. Substitution of Co2+, Mn2+, Cd2+, or Ni2+ for Mg2+ induced ATPase phosphorylation from Pi, giving phosphoenzymes of various stabilities. However, substitution of Ba2+, Sr2+, or Cr3+ produced no detectable phosphoenzymes, under the same experimental conditions. Our results show that ATPase phosphorylation from Pi, like its phosphorylation from ATP, does not have a strict specificity for magnesium.  相似文献   

7.
The mechanism of sarcoplasmic reticulum (SR) ATPase Mg2+-dependent phosphorylation from Pi was investigated in the presence of 15% v/v dimethyl sulfoxide at pH 6, 20 degrees C, and in the absence of potassium. Measurements of intrinsic fluorescence changes and of 32P-labeled phosphoprotein (*E-P) were in agreement, both at equilibrium and in transient situations. We found that the amount of phosphoenzyme present and its rate of formation depended solely on the concentration of the (Mg X Pi) complex. Up to 6 nmol of phosphate/mg of protein was covalently bound to the enzyme, implying almost complete phosphorylation. Oxygen exchange experiments were also performed in order to allow calculation of the absolute rate constant of *E-P hydrolysis to the noncovalent complex (0.8-1.0 s-1), which differs from the observed rate of enzyme dephosphorylation (0.3-0.5 s-1); in addition, they allowed calculation of the bimolecular rate constant of substrate binding (2-2.4 M-1 s-1). The results demonstrate that in the presence of dimethyl sulfoxide, phosphorylation occurs by the following simple mechanism: relatively slow binding of the neutral substrate (Mg X Pi), with poor affinity, followed by a thermodynamically favorable formation of the covalent bond between phosphate and the possibly hydrophobic active site. The interaction between magnesium and calcium-deprived SR vesicles was studied in the presence of 0-20% v/v dimethyl sulfoxide (or 0-30% v/v glycerol) at pH 7 and 20 degrees C. The presence of either solvent led to the disappearance of the two typical pH-dependent effects we previously characterized for magnesium: loss of the Mg2+-induced spectral shift of tryptophan fluorescence emission and loss of the biphasic pattern displayed by the intrinsic fluorescence rise after addition of calcium to Ca2+-deprived Mg2+-preincubated vesicles. In the absence of solvent, the interaction of magnesium with the calcium-deprived ATPase was also characterized from the point of view of phosphoenzyme formation from ATP or Pi at pH 7 in the absence of potassium: we found that calcium-independent phosphorylation was slower when phosphate was added to SR vesicles preincubated with magnesium that when magnesium was added to vesicles preincubated with phosphate, suggesting that preincubation with magnesium had depleted the phosphate-reactive conformation of the ATPase. A simple reaction scheme for phosphoenzyme formation is described: it implies that the (Mg X Pi) complex is a substrate for this reaction, whereas the Mg2+ itself acts as a pH-dependent, dimethyl sulfoxide sensitive inhibitor of full enzyme phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The Ca2(+)-ATPase found in the light fraction of sarcoplasmic reticulum vesicles can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. This reaction was inhibited by the phenothiazines trifluoperazine, chlorpromazine, imipramine, and fluphenazine and by the beta-adrenergic blocking agents propranolol and alprenolol. The inhibition was reversed by raising either the Pi or the Mg2+ concentration in the medium and was not affected by the presence of K+. Phosphorylation of the Ca2(+)-ATPase by Pi was also inhibited by ruthenium red and spermidine. These compounds compete with Mg2+, but, unlike the phenothiazines, they did not compete with Pi at the catalytic site, and the inhibition was abolished when K+ was included in the assay medium. The efflux of Ca2+ from loaded vesicles was greatly increased by the phenothiazines and by propranolol and alprenolol. In the presence of 200 microM trifluoperazine, the rate of Ca2+ efflux was higher than 3 mumol of Ca2+/mg of protein/10 s. The activation of efflux by these drugs was antagonized by Pi, Mg2+, K+, Ca2+, ADP, dimethyl sulfoxide, ruthenium red, and spermidine. The increase of Ca2+ efflux caused by trifluoperazine was not correlated with binding of the drug to the membrane lipids. It is concluded that the Ca2+ pump can be uncoupled by different drugs, thereby greatly increasing the efflux of Ca2+ through the ATPase. Displacement of these drugs by the natural ligands of the ATPase blocks the efflux through the uncoupled pathway and limits it to a much smaller rate. Thus, the Ca2(+)-ATPase can operate either as a pump (coupled) or as a Ca2+ channel (uncoupled).  相似文献   

9.
The effects of thapsigargin (TG), a specific inhibitor of intracellular Ca(2+)-ATPases, were studied on vesicular fragments of sarcoplasmic reticulum (SR) membranes. Inhibition of Ca2+ transport and ATPase activity was observed following stoichiometric titration of the membrane bound enzyme with TG. When Ca2+ binding to the enzyme was measured in the absence of ATP, or when one cycle of Ca(2+)-dependent enzyme phosphorylation by ATP was measured under conditions preventing turnover, protection against TG by Ca2+ was observed. The protection by Ca2+ disappeared if the phosphoenzyme was allowed to undergo turnover, indicating that a state reactive to TG is produced during enzyme turnover, whereby a dead end complex with TG is formed. Enzyme phosphorylation with Pi, ATP synthesis, and Ca2+ efflux by the ATPase in its reverse cycling were also inhibited by TG. However, under selected conditions (millimolar Ca2+ in the lumen of the vesicles, and 20% dimethyl sulfoxide in the medium) TG permitted very low rates of enzyme phosphorylation with Pi and ATP synthesis in the presence of ADP. It is concluded that the mechanism of ATPase inhibition by TG involves mutual exclusion of TG and high affinity binding of external Ca2+, as well as strong (but not total) inhibition of other partial reactions of the ATPase cycle. TG reacts selectively with the state acquired by the ATPase in the absence of Ca2+. This state is obtained either by enzyme exposure to EGTA, or by utilization of ATP and consequent displacement of bound Ca2+ during catalytic turnover.  相似文献   

10.
The ratio between Ca2+ uptake and Ca(2+)-dependent ATP hydrolysis measured in sarcoplasmic reticulum vesicles of rabbit skeletal muscle was found to vary greatly depending on the concentrations of oxalate or Pi used. In the presence of 5 mM oxalate, 20 mM Pi, and 1 mM Pi, the ratios found were in the range of 1.4-2.3, 0.6-0.8, and 0.01-0.10, respectively. The rates of Ca2+ exchange and ATP synthesis were measured at the steady state by adding trace amounts of 45Ca and 32Pi, after the vesicles had been loaded with Ca2+. In the presence of 1 mM Pi, 10 mM MgCl2, and 0.2 mM CaCl2, the ratio between Ca2+ exchange and ATP synthesis varied from 9 to 14. This ratio approached two when Ca2+ in the medium was reduced to a very low level, or when in the presence of Ca2+, dimethyl sulfoxide was added to the assay medium, or when the Pi concentration was raised from 1 to 20 mM. A ratio of two was also measured when the steady state was attained using ITP instead of ATP. In all the conditions that led to a ratio close to two, there was an increase in the fraction of enzyme phosphorylated by Pi. It is proposed that the coupling between Ca2+ translocation and ATP hydrolysis or synthesis is modulated by the phosphorylation of the ATPase by Pi.  相似文献   

11.
L de Meis  G Inesi 《Biochemistry》1985,24(4):922-925
Sarcoplasmic reticulum ATPase is phosphorylated by ATP in the presence of calcium, with a consequent reduction of the affinity of the binding sites for calcium and dissociation of the divalent cation from the enzyme. ATPase phosphorylation with Pi, on the other hand, requires prior removal of calcium from the enzyme, indicating that the energy requirement for phosphorylation of the enzyme-calcium complex can be met by ATP but not by Pi. We find that when the energy yield of the Pi reaction with the enzyme is increased by the addition of dimethyl sulfoxide to the medium, ATPase phosphorylation with Pi occurs even in the presence of calcium, and the binding sites undergo a reduction in affinity with consequent dissociation of Ca2+ from the enzyme, in analogy to the effect of ATP. It is thereby demonstrated experimentally that an essential step in the coupling of catalytic and transport activities is an interdependence and mutual ligand exclusion of the phosphorylation and calcium sites, in which ATP does not play a direct role. An important difference between the effects of ATP and Pi is that the former produces dissociation of Ca2+ inside the vesicles as the result of advancement of the catalytic cycle in the forward direction, while Pi produces dissociation of calcium into the outer medium as a consequence of equilibration of enzyme states producing a shift in the reverse direction of the enzyme cycle. These observations demonstrate how equilibration of intermediate enzyme states determines extent and direction of overall reaction flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Monomeric Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum dispersed in Triton X-100 is stoichiometrically phosphorylated from Pi in a Ca2+-depleted medium containing dimethyl sulfoxide and catalyzes efficient (80%) phosphoryl transfer to ADP following a jump in water activity in the presence of Ca2+. The Ca2+ concentration dependence of ATP synthesis was sigmoidal (nH = 1.7) and in the millimolar range (K0.5 = 0.3 mM), indicating the involvement of at least two low affinity Ca2+ binding sites. These results, taken together with the properties of the monomer in the forward direction of catalysis, show that the catalytic cycle of the detergent-solubilized monomer is essentially the same as that of the membrane enzyme. The substrate and ion specificity of the catalytic intermediates suggest that the monomer is capable of coupled vectorial transport of Ca2+.  相似文献   

13.
1. (Na+ + K+)-dependent adenosine triphosphatase was phosphorylated on the alpha-subunit by Pi in the presence of Mg2+. Phosphorylation was stimulated by ouabain. The interactions of Pi, Mg2+, and ouabain with the enzyme could be explained by a random terreactant scheme in which the binding of each ligand to the enzyme increased the affinities for the other two. Dissociation constants of all steps of this scheme were estimated. 2. In the presence of Pi and ouabain and without added Mg2+, the phosphoenzyme was formed. Because this could be prevented by ethylenediaminetetraacetic acid, but not ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, phosphoenzyme formation under these conditions was probably dependent on traces of endogenous Mg2+. The ability of this Mg2+ to support phosphorylation could be explained by the large increase in the enzyme's affinity for Mg2+ by ouabain. 3. In the absence of ouabain, Ca2+ did not support phosphorylation and inhibited Mg2+-dependent phosphorylation. At lower concentrations, Ca2+ was competitive with Mg2+. With increasing Ca2+ concentration, negative cooperativity was observed, suggesting the existence of multiple divalent cation sites with equivalent affinities for Mg2+, but varying affinities for Ca2+. 4. In the presence of ouabain, the maximum inhibition of Mg2+-dependent phosphorylation by Ca2+ was 50%. With saturating Pi, Mg2+, and ouabain, the number of sites binding ouabain was equal to the number of sites phosphorylated. Although Ca2+ halved phosphorylation and reduced the affinity for ouabain about 100-fold, it did not affect the number of ouabain sites. 5. We suggest that the enzyme is an alpha-oligomer and that the half-of-the-sites reactivity for phosphorylation in the presence of Pi, Mg2+, ouabain, and optimal Ca2+ is caused by (a) ouabain-induced increase in the affinities of both protomers for Mg2+ and (b) the inability of Ca2+ to replace Mg2+ on one of the protomers.  相似文献   

14.
A detailed characterization of p-nitrophenyl phosphate as energy-donor substrate for the sarcoplasmic reticulum Ca(2+)-ATPase was undertaken in this study. The fact that p-nitrophenyl phosphate can be hydrolyzed in the presence or absence of Ca(2+) by the purified enzyme is consistent with the observed phenomenon of intramolecular uncoupling. Under the most favorable conditions, which include neutral pH, intact microsomal vesicles, and low free Ca(2+) in the lumen, the Ca(2+)/P(i) coupling ratio was 0.6. A rise or decrease in pH, high free Ca(2+) in the lumenal space, or the addition of dimethyl sulfoxide increase the intramolecular uncoupling. Alkaline pH and/or high free Ca(2+) in the lumen potentiate the accumulation of enzyme conformations with high Ca(2+) affinity. Acidic pH and/or dimethyl sulfoxide favor the accumulation of enzyme conformations with low Ca(2+) affinity. Under standard assay conditions, two uncoupled routes, together with a coupled route, are operative during the hydrolysis of p-nitrophenyl phosphate in the presence of Ca(2+). The prevalence of any one of the uncoupled catalytic cycles is dependent on the working conditions. The proposed reaction scheme constitutes a general model for understanding the mechanism of intramolecular energy uncoupling.  相似文献   

15.
Purified Na+,K(+)-ATPase from kidney outer medulla was phosphorylated by Pi in a reaction synergistically stimulated by Mg2+, when 40% (v/v) dimethyl sulfoxide was added to the assay medium. The phosphoenzyme formed at this solvent concentration was able to synthesize ATP even in the presence of Mg2+, because hydrolysis was impaired. ATP in equilibrium [32P]Pi exchange was also inhibited, indicating that partial reactions in the forward direction were blocked by the solvent. In 40% (v/v) dimethyl sulfoxide the enzyme's affinity for ADP decreased, in comparison with the values observed in purely aqueous medium. Addition of K+, which accelerated dephosphorylation of Na+,K(+)-ATPase in a totally water medium, partially reversed the inhibition of hydrolysis that was observed in the presence of dimethyl sulfoxide.  相似文献   

16.
The phosphorylation of sarcoplasmic reticulum ATPase with Pi in the absence of Ca2+ was studied by equilibrium and kinetic experimentation. The combination of these measurements was then subjected to analysis without assumptions on the stoichiometry of the reactive sites. The analysis indicates that the species undergoing covalent interaction is the tertiary complex E X Pi X Mg formed by independent interaction of the two ligands with the enzyme. The binding constant of Pi or Mg2+ to either free or partially associated enzyme is approximately equal to 10(2) M-1, and no significant synergistic effect is produced by one ligand on the binding of the other; the equilibrium constant (Keq) for the covalent reaction E X Pi X Mg E-P X Mg is approximately equal to 16, with kphosph = 53 s-1, and khyd = 3-4 s-1 (25 degrees C, pH 6.0, no K+). The phosphorylation reaction of sarcoplasmic reticulum ATPase with Pi is highly H+ dependent. Such a pH dependence involves the affinity of enzyme for different ionization states of Pi, as well as protonation of two protein residues per enzyme unit in order to obtain optimal phosphorylation. The experimental data can then be fitted satisfactorily assuming pK values of 5.7 and 8.5 for the two residues in the nonphosphorylated enzyme (changing to 7.7 for one of the two residues, following phosphorylation) and values of 50.0 and 0.58 for the equilibrium constants of the H2(E X HPO4) in equilibrium with H(E-PO3) + H2O and H(E X HPO4) in equilibrium with E-PO3 + H2O reactions, respectively. In addition to the interdependence of H+ and phosphorylation sites, an interdependence of Ca2+ and phosphorylation sites is revealed by total inhibition of the Pi reaction when two high affinity calcium sites per enzyme unit are occupied by calcium. Conversely, occupancy of the phosphate site by vanadate (a stable transition state analogue of phosphate) inhibits high affinity calcium binding. The known binding competition between the two cations and their opposite effects on the phosphorylation reaction suggest that interdependence of phosphorylation site, H+ sites, and Ca2+ sites is a basic mechanistic feature of enzyme catalysis and cation transport.  相似文献   

17.
Site-specific mutagenesis was used to replace Gly310, Gly770, and Gly801, located in the transmembrane domain of the sarcoplasmic reticulum Ca(2+)-ATPase, with either alanine or valine. In addition, Gly310 was substituted with proline. In the Gly310----Ala mutant, the Vmax for Ca2+ transport and ATPase activity was reduced to about 40% of the wild type activity, but the apparent Ca2+ affinity was close to normal. The Gly310----Val and Gly310----Pro mutants were devoid of Ca2+ transport or ATPase activity and displayed more than a 20-fold reduction in the apparent Ca2+ affinities measured in the phosphorylation assays with either ATP or Pi. In these mutants, the rate of phosphoenzyme hydrolysis was reduced, and the ADP-insensitive phosphoenzyme intermediate accumulated. The apparent affinity for Pi was increased in the absence, but not in the presence, of dimethyl sulfoxide. The properties of this new class of Ca(2+)-ATPase mutants ("E2/E2P" type) are consistent with a conformational state in which the protein-phosphate interaction is stabilized and the Ca(2+)-protein interaction is destabilized. The Gly770----Ala mutant transported Ca2+ with a Vmax close to that of the wild type, but displayed more than a 20-fold reduction of apparent Ca2+ affinity. The Gly770----Val mutant was not phosphorylated from either ATP or Pi. The Gly801----Ala mutant transported Ca2+ with a Vmax of 126% that of the wild type, hydrolyzed ATP at the same Vmax as the wild type in the presence of calcium ionophore, and displayed a 3-fold reduction in apparent Ca2+ affinity. The Gly801----Val mutant was unable to transport Ca2+ and to be phosphorylated from ATP, even at a Ca2+ concentration of 1 mM, but Ca2+ in the micromolar range inhibited phosphorylation from Pi. The ability to bind ATP with normal affinity was retained. The properties of this mutant are consistent with a disruption of one of the two Ca2+ binding sites required for phosphorylation with ATP.  相似文献   

18.
Ca2+-dependent ATPases in the basolateral membrane of rat kidney cortex   总被引:1,自引:0,他引:1  
The basolateral segment of the rat renal tubular plasma membrane possesses Ca2+-dependent ATPase activity which was independent of Mg2+. Two kinetic forms were found: one, was a high affinity (apparent Km for free Ca2+ of 172 nM) low capacity (Vmax of 144 nmol of Pi X min-1 mg-1 protein) type; the other, had low affinity (apparent Km of 25 microM) and high capacity (896 nmol of Pi X min-1 X mg-1 protein). Mg2+ inhibited both Ca2+-ATPases. The high affinity enzyme exhibited positive cooperativity with respect to ATP, with a n value of 1.6. Ca2+-ATPase activity was not affected by calmodulin and was not inhibited by vanadate. On the other hand, both high and low affinity Ca2+-ATPase activities were increased when 1,25-dihydroxycholecalciferol was given to vitamin D-deficient rats. Kinetically, the enhanced activities were due to an increase in the Vmax values; the apparent affinities for free Ca2+ were not changed. The physiological function of the vitamin D-sensitive, Mg+-independent, Ca2+-ATPase activities remains to be established.  相似文献   

19.
M Chiesi  M Zurini  E Carafoli 《Biochemistry》1984,23(12):2595-2600
The Ca2+-transporting ATPase of erythrocytes was isolated by calmodulin affinity chromatography. The backward reaction of the ATPase was investigated. The phosphorylation of the solubilized enzyme by Pi required Mg and was inhibited by Ca and vanadate in the micromolar concentration range. Significant amounts of phosphoenzyme could be obtained only in a medium containing high dimethyl sulfoxide concentrations (greater than 25%) in order to diminish water activity at the phosphorylation site. The phosphoenzyme formed in this way could not phosphorylate ADP. However, upon addition of Ca2+ ions and dilution of dimethyl sulfoxide in the phosphorylated preparation (water activity jump), a highly reactive phosphoenzyme species was obtained which could transfer phosphate in nearly stoichiometric amounts to ADP to form ATP.  相似文献   

20.
Inhibition of the human erythrocyte calcium pump by dimethyl sulfoxide   总被引:1,自引:0,他引:1  
P.J. Romero   《Cell calcium》1992,13(10):659-667
The action of dimethyl sulfoxide on the human red cell Ca2+ pump was studied in inside-out vesicles. In a high-K+ medium at pH 7.6, the organic solvent inhibited both Ca2+ transport and ATP hydrolysis. Half-maximal effect was obtained with about 2% (v/v). At or below 10% dimethyl sulfoxide, the inhibition was overcome by adding inorganic phosphate or oxalate. In the absence of organic solvent, Ca2+ efflux from Ca(2+)-loaded vesicles consisted of a slow and a fast component whilst in its presence, there appears additionally a leakage component. The size of the latter depended markedly on dimethyl sulfoxide concentration, being about 3% at that level where Ca2+ uptake was half-maximally inhibited. ATP hydrolysis was more sensitive to dimethyl sulfoxide (10%) when free Ca2+ was increased within the millimolar level than when it was raised within the micromolar range. On the other hand, raising Ca2+ with organic solvent greatly stimulated ATP synthesis through ATP-Pi exchange, without reaching saturation. The results suggest that dimethyl sulfoxide blocks the red cell Ca2+ pump by increasing the affinity of the Ca2+ translocating site at the releasing step. They also show that at high concentrations, this solvent increases Ca2+ permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号