首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Multiple and variable tyrosine sulfation in extracellular class II leucine-rich repeat proteins/proteoglycans were characterized by mass spectrometry. The sulfogroup on tyrosine is labile and is released from peptides under normal mass spectrometric conditions. Thus, special approaches must be considered in order to identify this modification. By using a combination of mass spectrometry studies operating in negative and positive ion mode, tyrosine sulfation could be identified. In positive mode, the peptides normally appeared non-sulfated, whereas in negative mode a mixture of sulfated and non-sulfated species was observed. A combination of peptides released by different proteinases was used to obtain details on the locations of sulfate groups. Multiple tyrosine sulfates were observed in the N-terminal region of fibromodulin (up to 9 sites), osteoadherin (up to 6 sites), and lumican (2 sites). Osteoadherin contains two additional sulfated tyrosine residues close to its C terminus. We also identified an error in the published sequence of bovine fibromodulin, resulting in the replacement of Thr37 by Tyr37-Gly38, thus increasing its homology with its human counterpart.  相似文献   

2.
FLRT1, FLRT2, and FLRT3 comprise a novel gene family isolated in a screen for extracellular matrix proteins expressed in muscle. The three genes encode putative type I transmembrane proteins, each containing 10 leucine-rich repeats flanked by N-terminal and C-terminal cysteine-rich regions, a fibronectin/collagen-like domain, and an intracellular tail. FLRT1 is expressed in kidney and brain, FLRT2 is expressed in pancreas, skeletal muscle, brain, and heart, and FLRT3 is expressed in kidney, brain, pancreas, skeletal muscle, lung, liver, placenta, and heart. FLRT1 localized to 11q12-q13, FLRT2 to 14q24-q32, and FLRT3 to 20p11. When expressed in SF9 and COS-1 cells, FLRT1 and FLRT2 migrate as 90- and 85-kDa proteins, respectively, and both are glycosylated. Given the overall structure of the three proteins, a function in cell adhesion and/or receptor signaling is predicted.  相似文献   

3.
Asporin, a novel member of the leucine-rich repeat family of proteins, was partially purified from human articular cartilage and meniscus. Cloning of human and mouse asporin cDNAs revealed that the protein is closely related to decorin and biglycan. It contains a putative propeptide, 4 amino-terminal cysteines, 10 leucine-rich repeats, and 2 C-terminal cysteines. In contrast to decorin and biglycan, asporin is not a proteoglycan. Instead, asporin contains a unique stretch of aspartic acid residues in its amino-terminal region. A polymorphism was identified in that the number of consecutive aspartate residues varied from 11 to 15. The 8 exons of the human asporin gene span 26 kilobases on chromosome 9q31.1-32, and the putative promoter region lacks TATA consensus sequences. The asporin mRNA is expressed in a variety of human tissues with higher levels in osteoarthritic articular cartilage, aorta, uterus, heart, and liver. The deduced amino acid sequence of asporin was confirmed by mass spectrometry of the isolated protein resulting in 84% sequence coverage. The protein contains an N-glycosylation site at Asn(281) with a heterogeneous oligosaccharide structure and a potential O-glycosylation site at Ser(54). The name asporin reflects the aspartate-rich amino terminus and the overall similarity to decorin.  相似文献   

4.
5.
Drosophila chaoptin, required for photoreceptor cell morphogenesis, is a member of the leucine-rich repeat family of proteins. On the basis of biochemical and genetic analyses we previously proposed that chaoptin might function as a cell adhesion molecule. To test this hypothesis, chaoptin cDNA driven by the hsp 70 promoter was transfected into non-self-adherent Drosophila Schneider line 2 (S2) cells. Following heat shock induction of chaoptin expression, the transfected S2 cells formed multicellular aggregates. Mixing experiments of chaoptin expressing and non-expressing cells suggest that chaoptin expressing cells adhere homotypically. Previously it was shown that chaoptin is exclusively localized to photoreceptor cells. Thus, chaoptin is a cell-type-specific adhesion molecule. Biochemical analyses presented in this paper demonstrate that chaoptin is linked to the extracellular surface of the plasma membrane by covalent attachment to glycosyl-phosphatidylinositol. We propose that chaoptin and several other members of the leucine-rich repeat family of proteins define a new class of cell adhesion molecules.  相似文献   

6.
In a search of new, small leucine-rich repeat proteoglycan/protein (SLRP) family members, a novel gene, nephrocan (NPN), has been identified. The gene consists of three exons, and based on the deduced amino acid sequence, NPN has 17 leucine-rich repeat motifs and unique cysteine-rich clusters both in the N and C termini, indicating that this gene belongs to a new class of SLRP family. NPN mRNA was predominantly expressed in kidney in adult mice, and during mouse embryogenesis, the expression was markedly increased in 11-day-old embryos at a time when early kidney development takes place. In the adult mouse kidney, NPN protein was located in distal tubules and collecting ducts. When NPN was overexpressed in cell culture, the protein was detected in the cultured medium, and upon treatment with N-glycosidase F, the molecular mass was lowered by approximately 14 kDa, indicating that NPN is a secreted N-glycosylated protein. Furthermore, transforming growth factor-beta (TGF-beta)-responsive 3TP promoter luciferase activity was down-regulated, and TGF-beta-induced Smad3 phosphorylation was also inhibited by NPN, suggesting that NPN suppresses TGF-beta/Smad signaling. Taken together, NPN is a novel member of the SLRP family that may play important roles in kidney development and pathophysiology by functioning as an endogenous inhibitor of TGF-beta signaling.  相似文献   

7.
Bakke M  Kamei J  Obata A 《FEBS letters》2011,585(1):115-120
Hyaluronidase (HAase) activity was detected in the culture supernatants of Penicillium purpurogenum and Penicillium funiculosum. The HAase from Penicillium spp. (HAase-P) was a hyaluronate 4-glycanohydrolase, which catalyzed the endolytic hydrolysis of the β-1,4 glycosidic linkage, as do vertebrate HAases. The gene encoding HAase-P was cloned and expressed in Escherichia coli. According to homology analyses of the deduced amino acid sequences, HAase-P is not classified into any of the known HAase groups, but belongs to glycoside hydrolase family 16, which includes endo-β-1,3(4)-glucanase. Regarding the substrate specificities, no chondroitinase and glucanase activities were detected. Judging from homology analyses and enzymatic properties, HAase-P seems to be a new type of HAase.  相似文献   

8.
In a previous study, we isolated a novel gene, LRRC8 (leucine-rich repeat-containing 8), in a girl with congenital agammaglobulinemia. We have now identified four unknown LRRC8-like genes, named TA-LRRP, AD158, LRRC5, and FLJ23420. Their predicted structures are very similar to each other, and highly conserved between humans and the mouse. All five genes encode proteins consisting of 16 extracellular leucine-rich repeats (LRRs), all of which have four transmembrane regions except for FLJ23420. These genes belong to a novel family, designated the LRRC8 family, within the superfamily of LRR proteins. TA-LRRP, AD158, and LRRC5 might be implicated in proliferation and activation of lymphocytes and monocytes.  相似文献   

9.
10.
Leucine-rich repeat containing proteins are involved in protein-protein interactions and they regulate numerous cellular events during nervous system development and disease. Here we have isolated and characterized a new four-membered family of genes from human and mouse, named LRRTMs, that encode putative leucine-rich repeat transmembrane proteins. Human and mouse LRRTMs are highly conserved, and orthologous genes exist in other vertebrates but not in invertebrates. All LRRTMs, except LRRTM4, are located in the introns of different alpha-catenin genes, suggesting coevolution of these two gene families. We show by in situ hybridization and RT-PCR that LRRTM mRNAs are predominantly expressed in the nervous system and that each LRRTM possesses a specific, partially nonoverlapping expression pattern. The structure and expression profile of LRRTM mRNAs suggest that they may have a role in the development and maintenance of the vertebrate nervous system.  相似文献   

11.
The family of small leucine-rich repeat proteins and proteoglycans (SLRPs) contains several extracellular matrix molecules that are structurally related by a protein core composed of leucine-rich repeats (LRRs) flanked by two conserved cysteine-rich regions. The small proteoglycan decorin is the archetypal SLRP. Decorin is present in a variety of connective tissues, typically "decorating" collagen fibrils, and is involved in important biological functions, including the regulation of the assembly of fibrillar collagens and modulation of cell adhesion. Several SLRPs are known to regulate collagen fibrillogenesis and there is evidence that they may share other biological functions. We have recently determined the crystal structure of the protein core of decorin, the first such determination of a member of the SLRP family. This structure has highlighted several correlations: (1) SLRPs have similar internal repeat structures; (2) SLRP molecules are far less curved than an early model of decorin based on the three-dimensional structure of ribonuclease inhibitor; (3) the N-terminal and C-terminal cysteine-rich regions are conserved capping motifs. Furthermore, the structure shows that decorin dimerizes through the concave surface of its LRR domain, which has been implicated previously in its interaction with collagen. We have established that both decorin and opticin, another SLRP, form stable dimers in solution. Conservation of residues involved in decorin dimerization suggests that the mode of dimerization for other SLRPs will be similar. Taken together these results suggest the need for reevaluation of currently accepted models of SLRP interaction with their ligands.  相似文献   

12.
Leucine-rich repeat (LRR) proteins feature tandem leucine-rich motifs that form a protein-protein interaction domain. Plants contain diverse classes of LRR proteins, many of which take part in signal transduction. We have identified a novel family of nine Arabidopsis LRR proteins that, based on predicted intracellular location and LRR motif consensus sequence, are related to Ras-binding LRR proteins found in signaling complexes in animals and yeast. This new class has been named plant intracellular Ras group-related LRR proteins (PIRLs). We have characterized PIRL cDNAs, rigorously defined gene and protein annotations, investigated gene family evolution and surveyed mRNA expression. While LRR regions suggested a relationship to Ras group LRR proteins, outside of their LRR domains PIRLs differed from Ras group proteins, exhibiting N- and C-terminal regions containing low complexity stretches and clusters of charged amino acids. PIRL genes grouped into three subfamilies based on sequence relationships and gene structures. Related gene pairs and dispersed chromosomal locations suggested family expansion by ancestral genomic or segmental duplications. Expression surveys revealed that all PIRL mRNAs are actively transcribed, with three expressed differentially in leaves, roots or flowers. These results define PIRLs as a distinct, plant-specific class of intracellular LRR proteins that probably mediate protein interactions, possibly in the context of signal transduction. T-DNA knock-out mutants have been isolated as a starting point for systematic functional analysis of this intriguing family.  相似文献   

13.
The matrilins: a novel family of oligomeric extracellular matrix proteins.   总被引:8,自引:0,他引:8  
The matrilin family at present has four members that all share a structure made up of von Willebrand factor A domains, epidermal growth factor-like domains and a coiled coil alpha-helical module. The first member of the family, matrilin-1 (previously called cartilage matrix protein or CMP), is expressed mainly in cartilage. Matrilin-3 has a similar tissue distribution, while matrilin-2 and -4 occur in a wide variety of extracellular matrices. Matrilin-1 is associated with cartilage proteoglycans as well as being a component of both collagen-dependent and collagen-independent fibrils and on the basis of the related structures other matrilins may play similar roles. The matrilin genes are strictly and differently regulated and their expression may serve as markers for cellular differentiation.  相似文献   

14.
15.
We have discovered a new member of the class I small leucine-rich repeat proteoglycan (SLRP) family which is distinct from the other class I SLRPs since it possesses a unique stretch of aspartate residues at its N terminus. For this reason, we called the molecule asporin. The deduced amino acid sequence is about 50% identical (and 70% similar) to decorin and biglycan. However, asporin does not contain a serine/glycine dipeptide sequence required for the assembly of O-linked glycosaminoglycans and is probably not a proteoglycan. The tissue expression of asporin partially overlaps with the expression of decorin and biglycan. During mouse embryonic development, asporin mRNA expression was detected primarily in the skeleton and other specialized connective tissues; very little asporin message was detected in the major parenchymal organs. The mouse asporin gene structure is similar to that of biglycan and decorin with 8 exons. The asporin gene is localized to human chromosome 9q22-9q21.3 where asporin is part of a SLRP gene cluster that includes extracellular matrix protein 2, osteoadherin, and osteoglycin. Further analysis shows that, with the exception of biglycan, all known SLRP genes reside in three gene clusters.  相似文献   

16.
beta-Amyloid (Abeta) deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease (AD). Although the molecular mechanisms by which Abeta contributes to the progression of neuropathologic changes have not been established entirely, there is little doubt that the association of Abeta with astrocytes, the predominant cell type in brain, has significant influence on exacerbation of the disease. In an effort to identify key molecules involved in AD, we investigated Abeta-responsive genes using rat astrocytes. In this study, we identified a novel Abeta-induced rat gene, designated as Lib, encoding a type I transmembrane protein with an extracellular domain that contains fifteen leucine-rich repeats (LRRs). Human counterpart of rat Lib is located on chromosome 3q29 and human Lib mRNA found in particularly placenta. Lib mRNA levels in rat C6 astrocytoma cells can be increased by pro-inflammatory cytokines and the rat Lib-transfected cells express Lib protein on the cell surfaces. Lib appears to be a member of the LRR superfamily which is involved in cell-cell and/or -extracellular matrix interactions including adhesion or target recognition in neuroinflammatory states.  相似文献   

17.
Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations.  相似文献   

18.
Using the positional cloning approach, we have identified siglec-9 (HGMW-approved symbol SIGLEC9) a novel member of the sialic acid-binding Ig-like lectin (Siglec) family, which belongs to the immunoglobulin superfamily (IgSF). We characterized the genomic structure of this gene and determined its chromosomal localization, its homology to other members of the siglec family, and its tissue expression profile. The siglec-9 gene is composed of seven exons, with six intervening introns. The coding region consists of 1392 nucleotides and produces a 463-amino-acid protein. Furthermore, we have localized this gene to 19q13.4, 43.19 kb more telomeric than KLK14 (a member of the kallikrein gene family) through genomic sequencing data and restriction mapping with EcoRI. This novel siglec shows a high degree of homology to many members of the siglec family, including siglec-7 (80%), siglec-8 (72%), siglec-5 (65%), and CD33 (64%). This high degree of homology is also conserved in the extracellular Ig-like domains. Through RT-PCR, we have examined the expression of siglec-9 in a large number of tissues and have found relatively high-level expression in bone marrow, placenta, spleen, and fetal liver. Based on its homology to CD33, we speculate that this gene may also have some utility as a target for immunological antineoplastic therapy.  相似文献   

19.
Fibulins are a newly recognized family of extracellular matrix proteins. The five known members of the family share an elongated structure and many calcium-binding sites, owing to the presence of tandem arrays of epidermal growth factor-like domains. They have overlapping binding sites for several basement-membrane proteins, tropoelastin, fibrillin, fibronectin and proteoglycans, and they participate in diverse supramolecular structures. New insights into their biological roles are now emerging from studies of transgenic mice and of some inherited human diseases.  相似文献   

20.
We present a novel approach to design repeat proteins of the leucine-rich repeat (LRR) family for the generation of libraries of intracellular binding molecules. From an analysis of naturally occurring LRR proteins, we derived the concept to assemble repeat proteins with randomized surface positions from libraries of consensus repeat modules. As a guiding principle, we used the mammalian ribonuclease inhibitor (RI) family, which comprises cytosolic LRR proteins known for their extraordinary affinities to many RNases. By aligning the amino acid sequences of the internal repeats of human, pig, rat, and mouse RI, we derived a first consensus sequence for the characteristic alternating 28 and 29 amino acid residue A-type and B-type repeats. Structural considerations were used to replace all conserved cysteine residues, to define less conserved positions, and to decide where to introduce randomized amino acid residues. The so devised consensus RI repeat library was generated at the DNA level and assembled by stepwise ligation to give libraries of 2-12 repeats. Terminal capping repeats, known to shield the continuous hydrophobic core of the LRR domain from the surrounding solvent, were adapted from human RI. In this way, designed LRR protein libraries of 4-14 LRRs (equivalent to 130-415 amino acid residues) were obtained. The biophysical analysis of randomly chosen library members showed high levels of soluble expression in the Escherichia coli cytosol, monomeric behavior as characterized by gel-filtration, and alpha-helical CD spectra, confirming the success of our design approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号