首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones.  相似文献   

2.
Understanding how communities respond to environmental gradients is critical to predict responses of species to changing habitat conditions such as in regenerating secondary habitats after human land use. In this study, ground-living ants were sampled with pitfall traps in 27 plots in a heterogeneous and diverse subtropical forest to test if and how a broad set of environmental variables including elevation, successional age, and tree species richness influence ant diversity and community composition. In total, 13,441 ant individuals belonging to 71 species were found. Ant abundance was unrelated to all environmental variables. Rarefied ant species richness was negatively related to elevation, and Shannon diversity decreased with shrub cover. There was considerable variation in ant species amongst plots, associated with elevation, successional age, and variables related to succession such as shrub cover. It is shown that younger secondary forests may support a species-rich and diverse community of ants in subtropical forests even though the species composition between younger and older forests is markedly different. These findings confirm the conservation value of secondary subtropical forests, which is critical because subtropical forests have been heavily exploited by human activities globally. However, the findings also confirm that old-growth forest should have priority in conservation as it supports a distinct ant community. Our study identifies a set of ant species which are associated with successional age and may thus potentially assist local conservation planning.  相似文献   

3.
The relationship between functional traits and environmental factors contribute to understanding community structure and predicting which species will be able to elude environmental filters in different habitats. We selected 10 functional traits related to morphology, demography and regeneration niche in 54 subtropical premontane tree species to describe their main axes of functional differentiation. We derived species traits, environmental variables and species abundance data from 20 1-ha permanent plots established in a seasonal subtropical premontane forest in northwestern Argentina. We analyzed the relationship between species functional traits and environmental factors through RLQ and fourth-corner analyzes. We found an axis of structural differentiation that segregates understory from canopy species, and an axis of functional differentiation that segregates species that maximize resource acquisition from those that promote resource conservation. Environmental and forest use gradients operate hierarchically over subtropical premontane tree species influencing the distribution of demographic and morphological traits. The interaction between climatic and topographic factors influences the distribution of species functional traits at the regional scale. In addition, the history of forest use seems to operate at the landscape scale and explains the distribution of species traits reflecting a trade-off between resource acquisition and resource conservation strategies in secondary forests across different successional stages. Our results support the idea that functional traits may be used to analyze community structure and dynamics through niche differentiation and environmental filtering processes.  相似文献   

4.
Lianas are important vegetation components that control structure and function, especially in tropical and subtropical forests. To explore the spatial assembly mechanisms of a subtropical liana community, we tested the following hypotheses: spatial distributions of subtropical lianas are determined by forest structures and topographic features, which are surrogates for host/light availability and edaphic/water conditions, respectively, and these effects are mediated through species functional traits. We examined the spatial distribution of lianas in two plots (areas 9 and 16 ha) representing landscapes in an intact forest and a secondary forest, and analyzed spatial distribution pattern at the species level using a simple, spatially explicit model. We also examined the correlations between determinant factors for species distribution and species functional traits, including climbing habits, leaf traits and wood density. The spatial distribution of lianas was controlled mainly by topographic gradient. Most species had preferences for concave topographies, i.e., valley habitats. Any covariates related to the host (or to light) had little influence on the distribution of most liana species. Distributional responses to topography were different among species, and associated significantly with leaf nitrogen content and climbing habit, but not with wood density. The correlation between variation in habitat preferences and leaf economic spectrum suggests that an environmental filter for physiological response to topography is the important mechanism shaping the spatial patterns of this subtropical liana community.  相似文献   

5.
Does tree diversity increase wood production in pine forests?   总被引:1,自引:0,他引:1  
Vilà M  Vayreda J  Gracia C  Ibáñez JJ 《Oecologia》2003,135(2):299-303
Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.  相似文献   

6.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

7.
8.
南亚热带地带性植被是季风常绿阔叶林(海拔300~600 m;简称季风林),在中山地带则分布为山地常绿阔叶林(海拔1 000~1 500 m;简称山地林)。山地林的生态价值日益受到重视,但是对其树种的环境适应性仍缺乏足够了解。该研究基于南亚热带典型山地林(广西大明山)和季风林(广东鼎湖山)的固定样地,共测定57种代表性树种的叶形态解剖特征、机械强度和水力学性状,比较不同海拔常绿阔叶林树种叶性状以及多类性状关联性的差异。结果表明,与季风林树种相比,山地林树种叶较厚、比叶面积较小、机械强度较高,有利于提高对较高海拔山区冬季冰冻的适应能力。在2022年夏季持续高温干旱时期,季风林树种的叶水势和水力安全边界均低于山地林。但是大部分树种水力安全边界为正值且种间变异较大,表明不同海拔常绿阔叶林的水力风险较低。不同海拔常绿阔叶林的叶性状网络不同,山地林树种叶水力安全性和效率性无权衡关系,而季风林树种叶经济学性状(如比叶面积)与其他指标的关联性较弱。基于叶性状的研究揭示了南亚热带不同海拔常绿阔叶林树种适应策略的差异性和多样性。  相似文献   

9.
Evaluating plant functional traits helps to understand how plants respond to changing environmental conditions and resource availability associated with disturbance events. Livestock production is one of the primary drivers of tropical forest loss and degradation. Livestock alter environmental conditions within the forest by grazing, trampling and nutrient inputs, which in turn can influence species composition and functional traits of species. Understanding how livestock influence functional traits along a successional gradient is poorly understood. Here, we studied the effect of cattle grazing and fallow age on plant functional traits and soil nutrients in secondary and old-growth tropical dry forests. We analyzed plant functional traits of the most important species in successional and old-growth forest communities in both cattle present and cattle excluded plots. Our results showed the effects of cattle grazing and fallow age on plant functional traits, with fallow age explaining more variation than cattle grazing. In early succession, functional traits were associated with water conservation (thicker leaves, lower specific leaf area), and in later successional they were linked with sunlight conservation (larger height, higher specific leaf area). The presence of large fruits and seeds in advanced successional sites suggests high resource availability, which may help plants to successfully reproduce. Moreover, under cattle grazing some functional traits are associated with herbivory defense (high foliar dry weight and thick leaves). Even though N and C increased as succession advanced, the sites with cattle grazing had higher NH4 and NO3 concentrations as a result of fecal deposition. Plant functional traits responded to fallow age than to cattle grazing. Our study showed that cattle exclusion, as a management and biodiversity conservation strategy, contributes positively to soil nutrition. Thus, fallow age and cattle exclusion facilitate soil recovery and allows establishing species with suitable functional attributes for overcoming environmental filters in abandoned cattle fields.  相似文献   

10.
Diversity‐manipulation experiments suggest a positive effect of biodiversity on ecosystem properties (EPs), but variable relationships between species richness and EPs have been reported in natural communities. An explanation for this discrepancy is that observed richness–EPs relationships in natural communities change with environment and species functional identities. But how the relationships change along broad‐scale climatic gradients has rarely been examined. In this paper, we sampled 848 plots of 20 × 30 m2 from boreal to tropical forests across China. We examined plot biomass with respect to environmental factors, tree species richness and functional group identity (FGI, i.e. evergreen vs deciduous, and coniferous vs broadleaf). Variation partitioning was used to evaluate the relative effects of the three classes of factors. We found that, most of the ‘effects’ (percentage of variation explained) of richness and FGI on forest biomass were shared with environmental factors, but species richness and FGI still revealed significant effects in addition to environment for plots across China. Richness and FGI explained biomass mainly through their shared effects instead of independent effects, suggesting that the positive biodiversity effect is closely associated with a sampling effect. The relative effects of richness, FGI and environment varied latitudinally: the independent effects of environment and richness decreased from boreal to subtropical forests, whereas the total effect of FGI increased. We also found that the slope of richness–biomass relationship decreased monotonically from boreal to subtropical forests, possibly because of decreasing complementarity and increasing competition with increasing productivity. Our results suggest that while species richness does have significant effects on forest biomass it is less important than environmental gradients and other biotic factors in shaping large‐scale biomass patterns. We suggest that understanding how and why the diversity–EPs relationships change along climatic gradient would be helpful for a better understanding of real biodiversity effects in natural communities.  相似文献   

11.
The subtropical evergreen broad-leaved forests of Yunnan and Taiwan were compared along environmental and successional gradients with the aim of identifying important taxon and species diversity as well as the drivers of mountain biodiversity patterns. A detrended correspondence analysis of an exhaustive set of data collected from 105 and 223 plots for Yunnan and Taiwan, respectively, was applied to classify natural mature forest types. Additional data from 72 and 68 plots for Yunnan and Taiwan, respectively, were used for analyses of secondary succession. The floristic richness and diversity index were calculated for each type of forest. In Yunnan, the monsoon forests in mesic-humid sites had more taxa and tended to show higher species diversity than the other two forest types. In Taiwan, species diversity values were significantly higher in the MachilusCastanopsis zone in the middle altitudes (500–1500 m) than for the other three forest zones. For both Yunnan and Taiwan, the forests at the middle successional stage showed significantly higher species diversity than those at the early successional stage. Differences in diversity between the middle and late stages were not significant. These findings highlight the high species diversity of the natural mature evergreen broad-leaved forests of both Yunnan and Taiwan. In the secondary forests, as succession proceeds, species diversity comes to resemble that of the natural mature forests. In both ecosystems, the drivers of species diversity patterns are moisture, altitude, and succession/disturbance.  相似文献   

12.
Plant litter decomposition is one of the most important processes in terrestrial ecosystems, as it is a key factor in nutrient cycling. Decomposition rates depend on environmental factors, but also plant traits, as these determine the character of detritus. We measured litter decomposition rate for 57 common tree species displaying a variety of functional traits within four sites in primary and four sites in secondary tropical forest in Madang Province, Papua New Guinea. The phylogenetic relationships between these trees were also estimated using molecular data. The leaves collected from different tree species were dried for two days, placed into detritus bags and exposed to ambient conditions for two months. Nitrogen, carbon and ash content were assessed as quantitative traits and used together with a phylogenetic variance– covariance matrix as predictors of decomposition rate. The analysis of the tree species composition from 96 quadrats located along a successional gradient of swidden agriculture enabled us to determine successional preferences for individual species. Nitrogen content was the only functional trait measured to be significantly positively correlated with decomposition rate. Controlling for plant phylogeny did not influence our conclusions, but including phylogeny demonstrated that the mainly early successional family Euphorbiaceae is characterized by a particularly high decomposition rate. The acquisitive traits (high nitrogen content and low wood density) correlated with rapid decomposition were characteristic for early successional species. Decomposition rate thus decreased from early successional to primary forest species. However, the decomposition of leaves from the same species was significantly faster in primary than in secondary forest stands, very probably because the high humidity of primary forest environments keeps the decomposing material wetter.  相似文献   

13.
Dong He  Shekhar R. Biswas 《Oikos》2019,128(5):659-667
Species’ response to environmental site conditions and neighborhood interactions are among the important drivers of species’ spatial distributions and the resultant interspecies spatial association. The importance of competition to interspecies spatial association can be inferred from a high degree of trait dissimilarity of the associated species, and vice versa for environmental filtering. However, because the importance of environmental filtering and competition in structuring plant communities often vary with spatial scale and with plant life stage, the species’ spatial association–trait dissimilarity relationship should vary accordingly. We tested these assumptions in a fully mapped 50‐ha subtropical evergreen forest of China, where we assessed the degrees of interspecies spatial associations between adult trees and between saplings at two different spatial scales (10 m versus 40 m) and measured the degrees of trait dissimilarity of the associated species using six traits (leaf area, specific leaf area, leaf dry‐matter content, wood density, wood dry‐matter content and maximum height). Consistent across spatial scales and plant life stages, the degree of interspecies spatial association and the degree of overall trait dissimilarity (i.e. all six traits together) were negatively correlated, suggesting that environmental filtering might help assemble functionally similar species in the forest under study. However, when we looked into the spatial association–trait dissimilarity relationship for individual traits, we found that the relationships between interspecies spatial associations and the dissimilarity of wood density and dry‐matter content were significant for adults but not for saplings, suggesting the importance of wood traits in species’ survival during ontogeny. We conclude that processes shaping interspecies spatial association are spatial scale and plant life stage dependent, and that the distributions of functional traits offer useful insights into the processes underlying community spatial structure.  相似文献   

14.
The relationship between biodiversity and ecosystem functioning (BEF) is one of the most concerned topics in ecology. However, most of the studies have been conducted in controlled experiments in grasslands, few observational field studies have been carried out in forests. In this paper, we report variations of species diversity, functional diversity and aboveground biomass (AGB) for woody plants (trees and shrubs) along a chronosequence of four successional stages (18-year-old fallow, 30-year-old fallow, 60-year-old fallow, and old-growth forest) in a tropical lowland rainforest recovered after shifting cultivation on Hainan Island, China. Fifty randomly selected sample plots of 20 m × 20 m were investigated in each of the four successional stages. Four functional traits (specific leaf area, wood density, maximum species height and leaf dry matter content) were measured for each woody plants species and the relationships between species/functional diversity and AGB during secondary succession were explored. The results showed that both plant diversity and AGB recovered gradually with the secondary succession. AGB was positively correlated with both species and functional diversity in each stage of succession. Consistent with many controlled experimental results in grasslands, our observational field study confirms that ecosystem functioning is closely related to biodiversity during secondary succession in species rich tropical forests.  相似文献   

15.
Much of the world's tropical forests have been affected by anthropogenic disturbance. These forests are important biodiversity reservoirs whose diversity, structure and function must be characterized across the successional sequence. We examined changes in structure and diversity along a successional gradient in the lowlands of New Guinea. To do this, we measured and identified all stems ≥5 cm diameter in 19 0.25 ha plots ranging in age from 3 to >50 yr since disturbance. We also measured plant functional traits related to establishment, performance, and competitive ability. In addition, we examined change in forest structure, composition, species diversity, and functional diversity through succession. By using rarefaction to estimate functional diversity, we compared changes in functional diversity while controlling for associated differences in stem and species density. Basal area and species density increased with stand age while stem density was highest in intermediate secondary forests. Species composition differed strongly between mature and secondary forests. As forests increased in basal area, community‐weighted mean wood density and foliar carbon increased, whereas specific leaf area and proportion of stems with exudate decreased. Foliar nitrogen peaked in medium‐aged forests. Functional diversity was highest in mature forests, even after accounting for differences in stem and species diversity. Our study represents one of the first attempts to document successional changes in New Guinea's lowland forest. We found robust evidence that as succession proceeds, communities occupy a greater range of functional trait space even after controlling for stem and species density. High functional diversity is important for ecological resiliency in the face of global change.  相似文献   

16.
为探讨群落分布和环境间的内在关系,采用二元指示种分析(TWINSPAN)和典范对应分析(CCA)法对嵊州市公益林植物群落94 块固定监测样地(20 m×20 m)进行数量分类与排序.结果表明,采用TWINSPAN 可将94 个公益林监测样地分成14 组,其中以马尾松为建群种的群丛最多,是该区域主要的优势群落类型.CCA 排序结果较好地反映了植物群落与环境因子的关系,其中坡向和坡位是植物群落分布的主导环境因子.此方法可有效解释植物群落分布格局与环境之间的内在联系,为区域公益林分类经营管理提供科学依据.  相似文献   

17.
海南岛热带山地雨林天然次生林的功能群划分   总被引:4,自引:0,他引:4  
邓福英  臧润国 《生态学报》2007,27(8):3240-3249
热带林极高的物种丰富度使许多生态分析非常困难,把功能相似的物种划分为不同功能群,将为热带林的生态研究提供新的途径。以物种的7个功能特性因子(生长型、分布的海拔高度、分布的林型、木材密度、喜光性、演替地位和寿命)和9个林分结构因子(相对生物量、相对胸高断面积、相对树高、相对密度、相对频度、相对冠幅、相对更新数、相对死亡数和相对萌生数)为基础,应用数量化分析的方法,对海南岛典型的热带山地雨林天然次生林群落进行了功能群的划分。结果表明:(1)应用CCA分析林分结构因子时,可将山地雨林天然次生林的物种划分为6类功能群,它们的相对生物量、相对密度、相对频度、相对更新数、相对萌生数和相对死亡数等,随胸径和高度的增加而呈现有规律的变化;(2)应用CCA分析物种功能特性因子时,可将山地雨林天然次生林的物种划分为5类功能群,它们的功能特性都随演替过程而呈现有规律的变化;(3)在综合考虑两个不同角度CCA分析的基础上,最后将热带山地雨林天然次生林的物种共划分为11类功能群,它们能充分体现物种随胸径和高度结构的变化特点及其在演替过程中所处的阶段;(4)演替初期的灌木类功能群与各不同演替时期的乔木功能群共同分布于的中下层,但其大多处于死亡状态;(5)演替初期与演替中后期的乔木功能群则共同组成的主层林,但其死亡数量也较高。可见,海南岛热带山地雨林天然次生林目前正处不同功能群的激烈竞争阶段。  相似文献   

18.
Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species‐ and individual‐level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between‐plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late‐successional stages, there was high presence‐/absence‐based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.  相似文献   

19.
Coastal barrens support rare plant species but may be threatened by forest encroachment. We determined whether trees spread into coastal barren habitat from forest patches and assessed plant species composition and soil properties across the forest–barren ecotone. We quantified tree age and height, soil properties, and vascular plant, bryophyte and lichen species composition along transects perpendicular to the edges of tree patches within the forest–barren ecotone in coastal Nova Scotia. Randomization tests assessed whether the vegetation and environmental characteristics were significantly different in the transition zone compared to one or both adjoining ecosystems. We used ordination to examine trends in species composition across the ecotone and the relationship to environmental variables. Tree age and height decreased continuously from the forest towards the edge of the forest patches. There were also trends in vegetation composition and structure from the forest into the open barrens. Many species were most abundant within the transition zone, although not always significantly. Soil properties were relatively uniform across the ecotone. The structure and vegetation of the forest–barren ecotone suggests that forest patches act as nuclei for forest expansion on barrens with a typical successional pathway where coastal barren vegetation is gradually replaced by forest species. This encroachment may pose a threat to rare barrens communities. While landscape factors such as salt spray and wind exposure may determine the general locations where forest can establish, biotic processes of growth and dispersal appear to govern the fine-scale expansion of tree patches.  相似文献   

20.
Plant sexual systems appear to play an important role in community assembly: Dioecious species are found to tend to have a higher propensity to colonize communities in early successional stages. Here, we test two demographic hypotheses to explain this pattern in temperate forests. First, we test demographic differences between hermaphrodite and dioecious species in stressful younger successional stages: Previous theory predicts that hermaphrodite seed production is more harmed in stressful environments than that of dioecious populations leading to an advantage for females of dioecious species. Second, in primary forest, we hypothesized that dioecious species would show demographic advantage over monomorphic ones. We used data from two temperate forest plots in Northeast China surveyed over 10 years to compare the rates of growth and mortality of tree species with contrasting breeding systems in both secondary and primary forests. We assessed the effect of breeding system on the growth‐mortality trade‐off, while controlling for other traits usually considered as correlates of growth and mortality rates. We show that in the secondary forest, dioecious species showed weak advantage in demographic rates compared with monomorphic species; dioecious species showed considerably both lower relative growth and mortality rates compared to the hermaphrodites in the primary forest over 10 years, consistent with a priori predictions. Hermaphrodites showed strong growth‐mortality trade‐offs across forest stages, even when possibly confounding factors had been accounted for. These results suggest that sexual system influences community succession and assembly by acting on the rates of growth and mortality, and the trade‐off between them. As vegetation develops, the demographic differences between breeding systems are much larger. Our results demonstrate the association between breeding system, succession, and community assembly and that this relationship is succession‐stage dependent. Our findings support the suggestion that the demographic advantage of dioecious species facilitates the coexistence of sexual systems in primary forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号