首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dihydrolipohyl dehydrogenase (DLD) is a FAD-dependent enzyme that catalyzes the reversible oxidation of dihydrolipoamide. Herein, we report medium optimization for the production of a recombinant DLD with NADH-dependent diaphorase activity from a strain of Bacillus sphaericus PAD-91. The DLD gene that consisted of 1413 bp was expressed in Escherichia coli BL21 (DE3), and its enzymatic properties were studied. The composition of production medium was optimized using one-variable-at-a-time method followed by response surface methodology (RSM). B. sphaericus DLD catalyzed the reduction of lipoamide by NAD+ and exhibited diaphorase activity. The molecular weight of enzyme was about 50 kDa and determined to be a monomeric protein. Recombinant diaphorase showed its optimal activity at temperature of 30 °C and pH 8.5. K m and V max values with NADH were estimated to be 0.025 mM and 275.8 U/mL, respectively. Recombinant enzyme was optimally produced in fermentation medium containing 10 g/L sucrose, 25 g/L yeast extract, 5 g/L NaCl and 0.25 g/L MgSO4. At these concentrations, the actual diaphorase activity was calculated to be 345.0 ± 4.1 U/mL. By scaling up fermentation from flask to bioreactor, enzyme activity was increased to 486.3 ± 5.5 U/mL. Briefly, a DLD with diaphorase activity from a newly isolated B. sphaericus PAD-91 was characterized and the production of recombinant enzyme was optimized using RSM technique.  相似文献   

2.
This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10–30 min), ultrasound temperature (30–50°C), pH (2.0–8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40°C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.  相似文献   

3.
The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.  相似文献   

4.
The ability of Aspergillus japonicus ATCC 20236 to colonize different synthetic materials (polyurethane foam, stainless steel sponge, vegetal fiber, pumice stones, zeolites, and foam glass) and to produce fructooligosaccharides (FOS) from sucrose (165 g/L) is described. Cells were immobilized in situ by absorption, through direct contact with the carrier particles at the beginning of fermentation. Vegetal fiber was the best immobilization carrier as A. japonicus grew well on it (1.25 g/g carrier), producing 116.3 g/L FOS (56.3 g/L 1-kestose, 46.9 g/L 1-nystose, and 13.1 g/L 1-β-fructofuranosyl nystose) with 69% yield (78% based only in the consumed sucrose amount), giving also elevated activity of the β-fructofuranosidase enzyme (42.9 U/mL). In addition, no loss of material integrity, over a 2 day-period, was found. The fungus also immobilized well on stainless steel sponge (1.13 g/g carrier), but in lesser extents on polyurethane foam, zeolites, and pumice stones (0.48, 0.19, and 0.13 g/g carrier, respectively), while on foam glass no cell adhesion was observed. When compared with the FOS and β-fructofuranosidase production by free A. japonicus, the results achieved using cells immobilized on vegetal fiber were closely similar. It was thus concluded that A. japonicus immobilized on vegetal fiber is a potential alternative for high production of FOS at industrial scale.  相似文献   

5.
刘军彤  吴敬  陈晟 《生物工程学报》2016,32(8):1070-1080
为了提高分散泛菌Pantoea dispersa UQ68J来源的蔗糖异构酶产量,研究了不同信号肽及发酵条件对蔗糖异构酶在大肠杆菌中重组表达的影响。将携带天然信号肽的蔗糖异构酶基因优化后,转入大肠杆菌Escherichia coli BL21(DE3)构建重组表达菌株——ORI菌株,摇瓶发酵总酶活和胞外酶活分别为85 U/m L、65 U/m L。从天然信号肽开始第22位氨基酸作为成熟蛋白的起始,连接Pel B或Omp A信号肽构建P22和O22菌株,其中P22菌株发酵总酶活提高至138 U/m L,是ORI菌株总酶活的1.6倍;而O22菌株发酵总酶活和ORI菌株无明显差别。采用3.0 g/L的乳糖诱导,P22菌株的蔗糖异构酶总酶活提高至168 U/m L。在3 L发酵罐中,研究甘氨酸浓度和诱导时间对蔗糖异构酶分泌的影响,当补加0.5%甘氨酸,DCW为18 g/L(OD_(600)=30)开始诱导,P22菌株的蔗糖异构酶胞外酶活最高达1 981 U/m L,同时蔗糖异构酶总酶活达到2 640 U/m L,是已报道大肠杆菌重组表达蔗糖异构酶的最高水平。  相似文献   

6.
A serine alkaline protease (EC.3.4.21) was isolated, purified and characterized from culture filtrate of the thermophilic fungus Thermomyces lanuginosus Tsiklinsky. Fructose (1.5 %) and gelatin (0.5 %) proved to be the best carbon and nitrogen sources, giving a maximum enzyme yield of 9.2 U/mL. Dates waste was utilized as a sole organic source to improve enzyme productivity, and the yield was calculated to be 11.56 U/mL. This yield was expressed also as 231.2 U/g of assimilated waste. The alkaline protease produced was precipitated by iso-propanol and further purified by gel filtration through Sephadex G-100 and ion exchange column chromatography on diethyl amino ethyl (DEAE)-cellulose with a yield of 30.12 % and 13.87-fold purification. The enzyme acted optimally at pH 9 and 60 °C and had good stability at alkaline pH and high temperatures. The enzyme possessed a high degree of thermostability and retained full activity even at the end of 1 h of incubation at 60 °C. Michaelis–Menten constant (K m), maximal reaction velocity (V max) and turnover number (K cat) of the purified enzyme on gelatin as a substrate were calculated to be 4.0 mg/mL, 18.5 U/mL and 1.8 s?1, respectively. The best enzyme activators were K+, Ca2+ and Mn2, respectively, while phenylmethylsulfonyl fluoride (PMSF) was the strongest inhibitory agent, thus suggesting that the enzyme is a serine type protease. The enzyme is a glycoprotein with molecular mass of 33 kDa as determined by SDS-PAGE. It retained full activity after 15 min incubation at 60 °C in the presence of the detergent Ariel, thus indicating its suitability for application in the detergent industry.  相似文献   

7.
The extremely acidophilic microorganisms Bacillus pumilus and Bacillus subtilis were isolated from soil collected from the commercial edible oil and fish oil extraction industry. Optimization of conditions for acidic lipase production from B. pumilus and B. subtilis using palm oil and fish oil, respectively, was carried out using response surface methodology. The extremely acidic lipases, thermo-tolerant acidic lipase (TAL) and acidic lipase (AL), were produced by B. pumilus and B. subtilis, respectively. The optimum conditions for B. pumilus obtaining the maximum activity (1,100 U/mL) of TAL were fermentation time, 96 h; pH, 1; temperature, 50 °C; concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the TAL was 55 kDa. The AL from B. subtilis activity was 214 U/mL at a fermentation time of 72 h; pH, 1; temperature, 35 °C; concentration of fish oil, 30 g/L; maltose concentration, 10 g/L. After purification, an 11.4-fold purity of lipase with specific activity of 2,189 U/mg protein was obtained. The molecular weight of the extremely acidic lipase was 22 kDa. The functional groups of lipases were determined by Fourier transform-infrared (FT-IR) spectroscopy.  相似文献   

8.

Background

Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

Results

The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

Conclusions

Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.
  相似文献   

9.
In this study thermostable keratinase rK27 of Bacillus pumilus KS12 was expressed and secreted in Bacillus subtilis WB980 expression system under the control of xylose promoter (PxylA). The concentration of the recombinant keratinase rK27 produced by B. subtilis reached 4,432 U/mL after 24 h of culture at 37 °C and 200 rpm with 0.5 % xylose at an initial concentration of 0.3 OD600nm. Using the one-factor-at-a-time approach, we achieved an improvement in enzyme yield of up to 3.4-fold (15,390 U/mL) in the presence of 3 % yeast extract and 0.5 % tryptone. The enzyme was purified to homogenity using nickel affinity chromatography with a 3.63-fold purity and 80 % recovery. The purified enzyme rK27 hydrolyzed 1 g bone meal after 12 h at 40 °C, pH 9, with a maximum protein release of 37.3 mg/g bone meal; in comparison subtilisin Carlsberg hydrolyzed 19.3 mg/g bone meal and proteinase K hydrolyzed 6.2 mg/g bone meal. The hydrolysate obtained after hydrolysis of bone by rK27 was found to be effective as a flocculant at 0.1 mg in a 10 % (w/v) kaolin solution when compared with hydrolysates obtained from substilisin Carlsberg and proteinase K, which were effective at 0.5 mg and >2 mg, respectively.  相似文献   

10.
Ethanol production from Undaria pinnatifida (Sea mustard, Miyuk) was performed using yeast acclimated to specific sugars. Pretreatment conditions were optimized by thermal acid hydrolysis and enzyme treatment to increase the monosaccharide yield. Pretreatment by thermal acid hydrolysis was carried out using seaweed powder at 8 ~ 17% (w/v) solid content with a treatment time of 30 ~ 60 min. Enzyme treatment was carried out with 1% (v/v) Viscozyme L (1.2 FGU/mL), 1% (v/v) Celluclast 1.5 L (8.5 EGU/mL), 1% (v/v) AMG 300 L (3.0 AGU/mL), and 1% (v/v) Termamyl 120 L (0.72 KNU/mL). All enzymes except Termamyl 120 L, which was applied during pretreatment, were treated at 45°C for 24 h following pretreatment. Optimal pretreatment and enzyme conditions were determined to be 75 mM H2SO4, 13% (w/v) slurry, and 2.88 KNU/mL Termamyl 120 L at 121°C for 60 min. A maximum monosaccharide concentration of 33.1 g/L with 50.1% theoretical yield was obtained. To increase the ethanol yield, Pichia angophorae KCTC 17574 was acclimated to a high concentration (120 g/L) of galactose and mannitol at 30oC for 24 h. Ethanol production of 12.98 g/L with 40.12% theoretical yield was obtained from U. pinnatifida through fermentation with 0.35 g dry cell weight/L P. angophorae KCTC 17574 acclimated to mannitol and galactose.  相似文献   

11.
Medium and culture conditions for alginate lyase production by marine Vibrio sp. QY102 were first optimized using statistical methods including Plackett–Burman design and central composite design. Then, fermentation in 5-L bioreactor showed that alginate acted as easily used carbohydrate for Vibrio sp. QY102, while starch extended its growth phase and stabilized pH variations. Thus, a novel strategy using mixed carbon sources was proposed that starch supported growth while enzyme synthesis was induced by pulse feedings of solid alginate. The optimized process followed that Vibrio sp. QY102 grew on starch until the end of the logarithmic growth phase, and then solid alginate was added as 1 g/L every 3 h. Meanwhile, initial pH 5.0 and natural pH during fermentation was favorable for alginate lyase production. After optimization, the highest alginate lyase production reached 52.8 U/mL, which was 329 % higher than the control. Finally, fermentation scale-up was performed in 30-L bioreactor and the maximum alginate lyase production was obtained as 46.8 U/mL.  相似文献   

12.
The effects of light, pH and organic carbon sources were investigated on hydrogen production by algae. An optical fiber was examined as an internal light source. The optical fiber rendered prolonged lag time and total time of hydrogen production. The optimal pH to produce hydrogen for Chlorella sp. was 8.0. Glucose, fructose, sucrose and malt extract were compared as organic carbon sources. The optimal dose of each carbon source was 5 g/L for maximum hydrogen yield. Sucrose produced the largest hydrogen volume (1,315 ml/L), while the highest production rate (24 ml/L/h) was observed in the presence of fructose.  相似文献   

13.
Abstract

Strain DRP2-19 was detected to produce high yield of glucansucrase in MRS broth, which was identified to be Leuconostoc mesenteroides. In order for industrial glucansucrase production of L. mesenteroides DRP2-19, a one-factor test was conducted, then response surface method was applied to optimize its yield and discover the best production condition. Based on Plackett–Burman (PB) experiment, sucrose, Ca2+, and initial pH were found to be the most significant factors for glucansucrase production. Afterwards, effects of the three main factors on glucansucrase activity were further investigated by central composite design and the optimum composition was sucrose 35.87?g/L, Ca2+ 0.21?mmol/L, and initial pH 5.56. Optimum results showed that glucansucrase activity was increased to 3.94?±?0.43?U/mL in 24?hr fermentation, 2.66-fold higher than before. In addition, the crude enzyme was purified using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. The molecular weight of glucansucrase was determined as approximately 170?kDa by Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified 15.77-fold and showed a final specific activity of 338.56?U/mg protein.  相似文献   

14.
Uricase (urate oxidase EC 1.7.3.3) is a therapeutic enzyme that is widely used to catalyze the enzymatic oxidation of uric acid in the treatment of hyperuricemia and gout diseases. In this study, three bacterial species capable of producing extracellular uricase were isolated from a poultry source and screened based on the size of the clear zone using a uric acid agar plate. The bacterial species capable of producing uricase with the highest uricolytic activity was identified as Bacillus cereus strain DL3 using a 16SrRNA gene sequencing approach. The time-course study of uricase production was performed and the medium was optimized. Carboxymethylcellulose and asparagine were found to be the best carbon and nitrogen sources. Maximum uricolytic activity was observed at pH 7.0 with an inducer concentration of 2.0 g/L. Inoculum size of 5% gave maximum uricolytic activity. The maximum uricolytic activity of 15.43 U/mL was achieved at optimized conditions, which is 1.61 times more than the initial activity. Further, enzymatic stability was determined at different pH and temperature.  相似文献   

15.
Abstract

The optimal fermentation medium and conditions for mycelial growth and water-soluble exo-polysaccharides production by Isaria farinosa B05 were investigated. The medium components and fermentation conditions were optimized according to the one at a time method, while the concentration of medium components was determined by the orthogonal matrix method. The results showed that the optimal fermentation medium was as follows: sucrose 3.5% (w/v), peptone 0.5%, yeast extract 0.2%, K2HPO4 0.1%, and MgSO4 0.05%. The suitable fermentation conditions were as follows: initial pH 7.0, temperature 25°C, medium volume 75 mL/250 mL, inoculum volume 5% (v/v), time 5d. In such optimal nutrition and environmental conditions, the maximal mycelial yield was 2.124 g/100 mL after 4 day's fermentation, while maximal water-soluble exo-polysaccharides production reached 2.144 g/L after 5 day's fermentation.  相似文献   

16.
Urea in alcoholic beverages is a precursor of ethyl carbamate (EC), which is carcinogenic. At present, removal of urea by acid urease is considered to be the most effective method. In this study, a strain with higher acid urease production was screened and the enzyme activity was 1.12 U/mL. The strain was identified as Staphylococcus cohnii via a phylogenetic analysis of its 16S rDNA gene sequence, its morphological characteristics, and its physiological and biochemical properties, named as Staphylococcus cohnii HFUTY-08. Optimum culture conditions were determined through a single-factor test and an orthogonal test, with results as follows: glucose concentration 30 g/L, peptone concentration 15 g/L, initial pH 5, and an optimal inoculation amounts of 5%. Under these conditions, the activity of acid urease produced by strain Staphylococcus cohnii HFUTY-08 was 1.78 U/ml. Besides, the crude enzyme was purified to electrophoretic homogeneity by ion exchange chromatography and gel filtration chromatography. The molecular weight of the enzyme was estimated to be 295 kDa and the structural features of the enzyme were defined as (αβγ)3. Finally, the preliminary study on the removal of urea by acid urease in Chinese rice wine (CRW) showed that the enzyme could remove about 75% urea within 72 h at 37 °C, which effectively prevented EC production.  相似文献   

17.
游离及固定化果糖基转移酶部分酶学性质的比较研究   总被引:4,自引:0,他引:4  
 从诱变、筛选的米曲霉GX0 0 10菌株所产生的果糖基转移酶 ,经过纯化和固定化操作分别制备游离酶和固定化酶 ,对两者的酶学性质进行了比较研究 .结果表明 ,两者在蔗糖转化为蔗果低聚糖的酶促反应中 ,最适pH为 5 5,在pH5 0~ 7 5之间酶活性相对稳定 .游离酶和固定化酶的适宜温度范围分别是 4 5~ 52℃和 4 0~ 55℃ .在 55℃保温 60min ,酶活性保存率分别是 61 6%和 87 5% .固定化酶的热稳定性提高 .0 1mmol LHg2 +和 1mmol LAg+能完全抑制游离酶的活性 ,但只能部分抑制固定化酶的活性 ,1mmol L的Ti2 +能完全抑制两者的活性 .以蔗糖为底物时 ,游离酶的米氏常数Km=2 15mmol L ,而固定化酶Km =386mmol L .游离酶只能使用一次 ,固定化酶反复使用 54次后 ,剩余活力为 55 2 % .用 55% (W V)蔗糖溶液与固定化酶在pH5 0 ,4 6℃下作用 12h ,可获得61 5% (总低聚糖 总糖 )产物 ,其中蔗果五糖含量达到 7 2 % .  相似文献   

18.
Studies were carried out to screen and identify strains that are able to directly produce ferulic oligosaccharides (FOs) from wheat bran (WB). The inducement and distribution of hemicellulases from strain 2012, which was identified as a non-melanin secreting strain of Aureobasidium pullulans (A. pullulans), were also determined. In a 60 g/L WB solution, A. pullulans could produce 545 nmol/L FOs, 64.12 IU/mL xylanase and 0.14 IU/mL ferulic acid esterase (FAE). A. pullulans was cultivated in media with WB, glucose, xylose, sucrose, lactose or xylan as the carbon source, and hemicellulases were mainly induced by xylan and WB and inhibited by glucose and sucrose. Xylanase and FAE were mainly present in the culture filtrate, xylosidase in the hyphal filaments and arabinofuranosidase was a membrane-bound enzyme. The yield of FOs was positively correlated to the hemicellulases activity, and significantly positively (P < 0.05) correlated to the xylanase activity (r = 0.992).  相似文献   

19.
The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent Km and Vmax for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month’s storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.  相似文献   

20.
为提高重组毕赤酵母生产碱性果胶酶的产量和生产强度, 在摇瓶条件下优化了重组毕赤酵母生产碱性果胶酶的关键因素。结果表明, 以下条件:初始甘油浓度40 g/L、初始甲醇浓度3.1 g甲醇/g DCW、每24 h添加0.51 g甲醇/g DCW、诱导表达周期72 h、250 mL三角瓶诱导培养基装液量30 mL、初始pH 6.0, 最适于菌体生长与产物表达。在此基础上, 7 L罐上通过恒速流加甘油进一步提高细胞密度, 诱导阶段甲醇采取前期恒速流加和后期DO-stat, 发酵结束菌体干重达80 g/L, 酶活为217 U/mL, 比摇瓶结果提高了66.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号