首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148?±?8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20?±?13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55?±?15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73?±?13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor.  相似文献   

2.

Objectives

Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source.

Results

This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m?3. At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m?3 and 18.8 g COD m?3 h?1, respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450–600 to 350–370 Ω.

Conclusions

Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
  相似文献   

3.
The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m3 with current density of 3487 mA/m3.  相似文献   

4.
Electrochemical treatment of nitrate ions was attempted using different catalysts on the cathode in bioelectrochemical denitrification systems. The carbon cathode coated by biofilm (biocathode) could remove 91 % of nitrate ions at 1.0 V, which was almost same as the Pt-coated electrode (90 %). The exchange current density of biocathode was 0.0083 A/m2, which was almost 22 times higher than with an abiotic plain carbon cathode. The formation of intermediate products in nitrate reduction varied depending on the cell voltage. At 0.5 V, a large portion of nitrate was converted to ammonia, but at more increased cell voltage (0.7 and 1 V) a high amount of nitrite ions was found with little ammonia formation in cathodic solution. The maximum nitrate removal rate was 0.204 mg NO3-N/cm2d by biocathode, while plain carbon paper showed only 0.176 mg NO3-N/cm2d. Electrochemical analysis of chronoamperometry showed a higher stable current generation for biocathode (3.1 mA) and Pt-coated cathode (2.8 mA) as compared to plain carbon (0.6 mA) at 0.7 V of poised voltage.  相似文献   

5.
Scaling up microbial fuel cells (MFCs) requires the development of compact reactors with multiple electrodes. A scalable single chamber MFC (130 mL), with multiple graphite fiber brush anodes and a single air-cathode cathode chamber (27 m2/m3), was designed with a separator electrode assembly (SEA) to minimize electrode spacing. The maximum voltage produced in fed-batch operation was 0.65 V (1,000 Ω) with a textile separator, compared to only 0.18 V with a glass fiber separator due to short-circuiting by anode bristles through this separator with the cathode. The maximum power density was 975 mW/m2, with an overall chemical oxygen demand (COD) removal of >90% and a maximum coulombic efficiency (CE) of 53% (50 Ω resistor). When the reactor was switched to continuous flow operation at a hydraulic retention time (HRT) of 8 h, the cell voltage was 0.21 ± 0.04 V, with a very high CE = 85%. Voltage was reduced to 0.13 ± 0.03 V at a longer HRT = 16 h due to a lower average COD concentration, and the CE (80%) decreased slightly with increased oxygen intrusion into the reactor per amount of COD removed. Total internal resistance was 33 Ω, with a solution resistance of 2 Ω. These results show that the SEA type MFC can produce stable power and a high CE, making it useful for future continuous flow treatment using actual wastewaters.  相似文献   

6.
Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470 Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m2 was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m2 was recorded.  相似文献   

7.
Microbial fuel cells (MFCs) have received attention as a promising renewable energy technology for waste treatment and energy recovery. We tested a submersible MFC with an innovative design capable of generating a stable voltage of 0.250 ± 0.008 V (with a fixed 470 Ω resistor) directly from primary sludge. In a polarization test, the maximum power density was 0.18 W/m2 at a current density of 0.8 A/m2 with an external resistor of 300 Ω. The anodic solution of the primary sludge needs to be adjusted to a pH 7 for high power generation. The modified primary sludge with an added phosphate buffer prolonged the current generation and increased the power density by 7 and 1.5 times, respectively, in comparison with raw primary sludge. These findings suggest that energy recovery from primary sludge can be maximized using an advanced MFC system with optimum conditions.  相似文献   

8.
A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air–cathode MFC fed with a mixture of glucose and acetate (500 mg L?1 COD), 40–60 mV of voltage (17–26 mA m?2 of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air–cathode MFC was fed with reject wastewater (10,000 mg L?1 COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m?2, and 8.9 ± 3.65 mW m?2, respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m?2, and 18.6 ± 7.23 mW m?2, respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.  相似文献   

9.
Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD = 626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m3 (264 mW/m2). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m2, reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.  相似文献   

10.
A compact, three‐in‐one, flow‐through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm‐dominated anode consortium enriched under a multimode, continuous‐flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air‐breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50‐mM ferricyanide‐based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5–6 Ω, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area‐based power densities and to enable comparison of various MFC configurations. Published 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture.  相似文献   

12.
To reduce the amount of phosphate buffer currently used in Microbial Fuel Cell's (MFC's), we investigated the role of biological nitrification at the cathode in the absence of phosphate buffer. The addition of a nitrifying mixed consortia (NMC) to the cathode compartment and increasing ammonium concentration in the catholyte resulted in an increase of cell voltage from 0.3 V to 0.567 V (external resistance of 100 Ω) and a decrease of catholyte pH from 8.8 to 7.05. A large fraction of ammonium was oxidized to nitrite, as indicated by an increase of nitrate-nitrogen (NO3–N). An MFC inoculated with an NMC and supplied with 94.2 mgN/l ammonium to the catholyte could generate a maximum power of 2.1 ± 0.14 mW (10.94 ± 0.73 W/m3). This compared favorably to an MFC supplied with either buffered or non-buffered solution. The buffer-free NMC inoculated cathodic chamber showed the smallest polarization resistance, suggesting that nitrification resulted in improved cathode performance. The improved performances of the phosphate buffer-free cathode and cell are positively related to biological nitrification, in which we suggest additional protons produced from ammonium oxidation facilitated electrochemical reduction of oxygen at cathode.  相似文献   

13.
A low-cost and effective iron-chelated catalyst was developed as an electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). The catalyst was prepared by pyrolyzing carbon mixed iron-chelated ethylenediaminetetraacetic acid (PFeEDTA/C) in an argon atmosphere. Cyclic voltammetry measurements showed that PFeEDTA/C had a high catalytic activity for ORR. The MFC with a PFeEDTA/C cathode produced a maximum power density of 1122 mW/m2, which was close to that with a Pt/C cathode (1166 mW/m2). The PFeEDTA/C was stable during an operation period of 31 days. Based on X-ray diffraction and X-ray photoelectron spectroscopy measurements, quaternary-N modified with iron might be the active site for the oxygen reduction reaction. The total cost of a PFeEDTA/C catalyst was much lower than that of a Pt catalyst. Thus, PFeEDTA/C can be a good alternative to Pt in MFC practical applications.  相似文献   

14.
Development of highly efficient anode is critical for enhancing the power output of microbial fuel cells (MFCs). The aim of this work is to investigate whether modification of carbon paper (CP) anode with graphene (GR) via layer-by-layer assembly technique is an effective approach to promote the electricity generation and methyl orange removal in MFCs. Using cyclic voltammetry and electrochemical impedance spectroscopy, the GR/CP electrode exhibited better electrochemical behavior. Scanning electron microscopy results revealed that the surface roughness of GR/CP increased, which was favorable for more bacteria to attach to the anode surface. The MFCs equipped with GR/CP anode achieved a stable maximum power density of 368 mW m?2 under 1,000 Ω external resistance and a start time for the initial maximum voltage of 180 h, which were, respectively, 51 % higher and 31 % shorter than the corresponding values of the MFCs with blank anode. The anode and cathode polarization curves revealed negligible difference in cathode potentials but obviously difference in anode potentials, indicating that the GR-modified anode other than the cathode was responsible for the performance improvement of MFC. Meanwhile, compared with MFCs with blank anode, 11 % higher decolorization efficiency and 16 % higher the chemical oxygen demand removal rate were achieved in MFC with GR-modified anode during electricity generation. This study might provide an effective way to modify the anode for enhanced electricity generation and efficient removal of azo dye in MFCs.  相似文献   

15.
Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m2 at 0.25 mA as compared with 81.3 mW/m2 of Pt/C, 29.7 mW/m2 of NPc/C and 9.3 mW/m2 of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.  相似文献   

16.
To enhance the oxygen reduction reaction (ORR) activity and power generation capacity of a microbial fuel cell (MFC), MIL-53(Fe) (Fe-based Materials of Institute Lavoisier) as the electrochemical catalyst was synthesized using the hydrothermal method. The catalytic structure and morphology of all materials were comprehensively characterized by Fourier Transform infrared spectrometer (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results show that there were many nanopores on MIL-53(Fe), which improved the electrocatalytic activity. The MIL-53(Fe)-modified air cathode MFC had a voltage output of approximately 0.37 V and maintained that output for one week. The maximum power density was 397 ± 6.3 mW/m2. MIL-53(Fe) was an excellent electrochemical catalyst, significantly enhancing the catalytic oxygen reduction ability and promoting the power output of the MFC. This study provides a method to apply MIL-53(Fe) materials in microbial fuel cells.  相似文献   

17.

Background and aims

Wetlands are important carbon sinks across the planet. However, soil carbon sequestration in tropical freshwater wetlands has been studied less than its counterpart in temperate wetlands. We compared carbon stocks and carbon sequestration in freshwater wetlands with various geomorphic features (estuarine, perilacustrine and depressional) and various plant communities (marshes and swamps) on the tropical coastal plain of the Gulf of Mexico in the state of Veracruz, Mexico. These swamps are dominated by Ficus insipida, Pachira aquatic and Annona glabra and the marshes by Typha domingensis, Thalia geniculata, Cyperus giganteus, and Pontederia sagittata.

Methods

The soil carbon concentration and bulk density were measured every 2 cm along 80 cm soil profiles in five swamps and five marshes. Short-term sediment accretion rates were measured during a year using horizontal makers in three of the five swamps and marshes, the carbon sequestration was calculated using the accretion rates, and the bulk density and the percentage of organic carbon in the surficial layer was measured.

Results

The average carbon concentration ranged from 50 to 150 gC kg?1 in the marshes and 50 to 225 gC kg?1 in the swamps. When the wetlands were grouped according to their geomorphic features, no significant differences in the carbon stock (P?=?0.095) were found (estuarine (25.50?±?2.26 kgC m?2), perilacustrine (28.33?±?2.74 kgC m?2) and depressional wetlands (34.93?±?4.56 kgC m?2)). However, the carbon stock was significantly higher (P?=?0.030) in the swamps (34.96?±?1.3 kgC m?2) than in the marshes (25.85?±?1.19 kgC m?2). The average sediment accretion rates were 1.55?±?0.09 cm yr?1 in the swamps and 0.84?±?0.02 cm yr?1 in the marshes with significant differences (P?=?0.040). The rate of carbon sequestration was higher (P?=?0.001) in swamp soils (0.92?±?0.12 kgC m?2 yr?1) than marsh soils (0.31?±?0.08 kgC m?2 yr?1). Differences in the rates of carbon sequestration associated with geomorphic features were found between the swamp ecosystems (P?<?0.05); i.e., higher values were found in the swamps than in the marshes in perilacustrine and estuarine wetlands (P?<?0.05). However, no significant differences (P?=?0.324) in carbon sequestration rates were found between the marsh and swamp areas of the depressional site.

Conclusions

Swamp soils are more important contributors to the carbon stock and sequestration than are marsh soils, resulting in a reduction in global warming, which suggests that the plant community is an important factor that needs to be considered in global carbon budgets and projects of restoration and conservation of wetlands.  相似文献   

18.
Bacterial communities in anode microbial fuel cells (MFC) obtained from anaerobic digester sludge in a municipal wastewater treatment plant (Nanjing, China) were investigated. Glucose, propyl alcohol and methanol were used as sole carbon source in two-chamber MFC. The results showed that a reproducible cycle of power production can be formed in MFC fed with 3 substrates and glucose-fed MFC had the highest peak power density of 1499 ± 33 mW/m3, followed by methanol- (1264 ± 47 mW/m3) and propyl alcohol-fed MFC (1192 ± 36 mW/m3). Firmicutes, Bacteroidetes, Verrucomicrobia, Proteobacteria, Synergistetes and Armatimonadetes were dominant phyla in 3 MFC. Firmicutes was the most dominant phylum in glucose-fed MFC samples and Bacteroidetes prevailed in methanol- and propyl alcohol-fed MFC. These data indicate that propyl alcohol and methanol along with glucose can be used as substrates of MFC.  相似文献   

19.
Surface modifications of anode materials are important for enhancing power generation of microbial fuel cell (MFC). Membrane free single-chamber air-cathode MFCs, MFC-A and MFC-N, were constructed using activated carbon fiber felt (ACF) anodes treated by nitric acid and ethylenediamine (EDA), respectively. Experimental results showed that the start-up time to achieve the maximum voltages for the MFC-A and MFC-N was shortened by 45% and 51%, respectively as compared to that for MFC-AT equipped with an unmodified anode. Moreover, the power output of MFCs with modified anodes was significantly improved. In comparison with MFC-AT which had a maximum power density of 1304 mW/m2, the MFC-N achieved a maximum power density of 1641 mW/m2. The nitric acid-treated anode in MFC-A increased the power density by 58% reaching 2066 mW/m2. XPS analysis of the treated and untreated anode materials indicated that the power enhancement was attributable to the changes of surface functional groups.  相似文献   

20.
Feng Y  Yang Q  Wang X  Liu Y  Lee H  Ren N 《Bioresource technology》2011,102(1):411-415
Biodiesel production through transesterification of lipids generates large quantity of biodiesel waste (BW) containing mainly glycerin. BW can be treated in various ways including distillation to produce glycerin, use as substrate for fermentative propanediol production and discharge as wastes. This study examined microbial fuel cells (MFCs) to treat BW with simultaneous electricity generation. The maximum power density using BW was 487 ± 28 mW/m2 cathode (1.5 A/m2 cathode) with 50 mM phosphate buffer solution (PBS) as the electrolyte, which was comparable with 533 ± 14 mW/m2 cathode obtained from MFCs fed with glycerin medium (COD 1400 mg/L). The power density increased from 778 ± 67 mW/m2 cathode using carbon cloth to 1310 ± 15 mW/m2 cathode using carbon brush as anode in 200 mM PBS electrolyte. The power density was further increased to 2110 ± 68 mW/m2 cathode using the heat-treated carbon brush anode. Coulombic efficiencies (CEs) increased from 8.8 ± 0.6% with carbon cloth anode to 10.4 ± 0.9% and 18.7 ± 0.9% with carbon brush anode and heat-treated carbon brush anode, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号