首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kragh PM  Du Y  Corydon TJ  Purup S  Bolund L  Vajta G 《Theriogenology》2005,64(7):1536-1545
The purpose of our work was to establish an efficient protocol for activation of porcine cytoplast-fibroblast constructs produced by the handmade cloning technique. Firstly, we investigated a combined electrical and chemical activation protocol for parthenogenetic development of in vitro matured zona-free oocytes. Oocytes were activated by one 80 micros pulse and subsequently cultured in cytochalasin B and cycloheximide. Developmental rates of blastocysts from activated oocytes were 49+/-1 and 40+/-2%, when using one 80 micros pulse of 0.85 or 1.25 kV/cm, respectively. The activation procedure was further confirmed by a simultaneous re-fusion and activation of bisected oocytes, resulting in a blastocyst rate of 41+/-8%. Secondly, the activation protocol was applied in the handmade cloning technique. In vitro matured zona-free porcine oocytes were bisected and halves containing no chromatin, i.e. the cytoplasts, were selected. Reconstructed embryos were produced by a two-step fusion procedure. At the first step, one cytoplast was fused to one fibroblast by one 80 micros pulse of 1.25 kV/cm. After 1h, the cytoplast-fibroblast pair and another cytoplast were fused and activated simultaneously by one 80 micros pulse of 0.85 kV/cm, and subsequently cultured in cytochalasin B and cycloheximide. The development of reconstructed embryos to the blastocyst stage was in average 21+/-4%, and total blastocyst cell counts were in average 48+/-3. Thus, the combined electrical and chemical activation procedure resulted in efficient blastocyst development in the handmade cloning technique.  相似文献   

2.
Hyun SH  Lee GS  Kim DY  Kim HS  Lee SH  Kim S  Lee ES  Lim JM  Kang SK  Lee BC  Hwang WS 《Theriogenology》2003,59(7):1641-1649
In order to develop a culture system and recipient cytoplasm that could improve the developmental competence of somatic cell nuclear transfer (SCNT) embryos for successful cloning of pigs, we evaluated the effect of donor oocytes and in vitro maturation (IVM) media on maturation of oocytes and developmental competence of SCNT embryos. In Experiment 1, oocytes derived from sows or gilts were matured in two IVM media (TCM-199 versus NCSU-23) and maturation of oocytes was evaluated by the status of chromatin configuration, the diameter of matured oocytes, the thickness of the zona pellucida, and the size of the perivitelline space (PVS). Sow oocytes matured in TCM-199 (S-TCM group) and NCSU-23 (S-NCSU group) showed significantly higher (P<0.05) maturation rates (S-TCM and S-NSCU, 86+/-4 and 82+/-4%, respectively) when evaluated by metaphase-II status than the gilt oocytes matured in TCM-199 (G-TCM group, 71+/-3%) and in NCSU-23 (G-NCSU-23 group, 71+/-3%). Oocyte diameter, the thickness of the zona pellucida, and the perivitelline space of sow oocytes (S-TCM and S-NCSU) were larger than those of gilt oocytes (G-TCM and G-NCSU) after IVM (P<0.05). In Experiment 2, SCNT was performed, using in vitro-matured oocytes from each group as recipient cytoplasm and porcine fetal fibroblasts as karyoplasts. The reconstructed embryos were electrically fused and activated, and cleavage and blastocyst formation were monitored under a stereomicroscope. The total cell number of flattened blastocysts stained with 5 microM bisbenzimide on day 7 were counted. In addition, in vitro matured non-enucleated oocytes were also electrically activated (parthenogenetic activation) and pronuclear formation was monitored. No difference in pronuclear formation rate after parthenogenetic activation and fusion rate after SCNT was observed among experimental groups. A significantly higher cleavage rate (P<0.05) was observed in S-TCM (69+/-4%) when compared with only G-NCSU (58+/-4%), but not with G-TCM (60+/-4%) or S-NCSU (68+/-4%). The rate of blastocyst formation was significantly higher (P<0.05) in sow oocytes (24% in S-TCM and S-NCSU), when compared to that observed in G-TCM (15%), and G-NCSU (14%). When the same source of oocytes was used, there was no significant difference in rate of blastocyst formation in the two culture media. Total cell number of blastocysts were not significantly different among experimental groups. In conclusion, the present study clearly demonstrated that sow oocytes have a greater developmental competence than gilt oocytes, regardless of the maturation medium examined.  相似文献   

3.
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.  相似文献   

4.
Optimization of parthenogenetic activation protocol in porcine   总被引:10,自引:0,他引:10  
The effects of the electrical field strengths, number of pulses, and post-activation media on chromatin conformation and parthenogenetic development were studied to optimize the activation protocol for porcine nuclear transfer. In experiment 1, electrical field strengths were examined. Oocytes were subjected to square direct current pulses at output voltages of 1.2, 1.7, 2.2, and 2.7 kV/cm for 1 x 30 microsec. The voltage resulting from experiment 1 was 2.2 kV/cm, in which 50.0% of activated oocytes developed to blastocysts in vitro. In experiment 2, the influence of 1, 2, and 3 pulses on blastocyst development was tested using field strengths and post-activation medium described in experiment 1. Oocytes activated by a single 30 microsec pulse of 2.2 kV/cm DC yielded a higher blastocyst rate (56.3%) than oocytes activated by 2 or 3 pulses (<42.5%). In experiment 3 and 4, we investigated the effects of cytochalasin B (CB), cycloheximide (CH), and CB + CH on nuclear development stages and parthenogenetic development following a single 30 microsec pulse of 2.2 kV/cm DC. The percentage of activated oocytes was not different among CB (93.3%), CB + CH (98.3%), control (80.0%), and CH (80.0%) groups 12 hr after activation. Treatment with CB (57.5%) or CB + CH (53.8%) enhanced the blastocyst rate compared with other groups, CH (23.8%) treated- and control group (18.8%). The results demonstrated that a single 30 microsec pulse of 2.2 kV/cm DC followed by culturing in post-activation medium with CB for 5 hr were effective parameters for parthenogenetic activation and blastocyst formation of in vitro matured porcine oocytes which suggests that a single calcium rise is sufficient to activate pig oocytes and to achieve high rate of blastocyst development.  相似文献   

5.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

6.
The viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 microM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 micros) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5-81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2-32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.  相似文献   

7.
Bovine follicular oocytes were collected from ovarian antral follicles (2 to 7 mm in diameter) from slaughtered cattle. They were matured in vitro (IVM) for 23 to 24 h and then activated. In Experiment 1, 4 concentrations of ethanol were compared. The activation rates of oocytes were 4, 12, 36 and 27%, respectively, following exposure for 7 min to 0, 5, 7 and 10% ethanol. In Experiment 2, 7% ethanol was tested with exposure times of 0, 5, 7.5 and 10 min, and 6, 32, 27 and 33% of the oocytes were activated, respectively. In Experiment 3 the synergistic effect of ethanol and electric pulse was compared within 4 treatments: A) 7% ethanol alone, B) electric pulse alone, C) ethanol first and then electric pulse treatment, and D) electric pulse first followed by ethanol exposure. Of the oocytes activated, 37, 31, 28 and 51%, respectively, were from Treatments A through D. In Experiments 4 and 5 the possible synergistic effect of ethanol and a protein synthesis inhibitor, cycloheximide, was studied within 4 treatments: A) parthenogenetic control with no activation treatment, B) ethanol alone, C) cycloheximide alone, and D) ethanol treatment followed by cycloheximide. The oocyte activation rates in Experiment 4 in Treatments A through D, respectively, were 9, 44, 43 and 84%. Corresponding values for development of oocytes to the 2 to 8-cell stage after culture for 3 d (Experiment 5) were 9, 20, 14 and 45%, respectively (P<0.05). In conclusion, exposure to 7% ethanol for 5 min followed by incubation with cycloheximide was the best activation treatment for bovine IVM oocytes.  相似文献   

8.
Naruse K  Quan YS  Kim BC  Lee JH  Park CS  Jin DI 《Theriogenology》2007,68(5):709-716
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.  相似文献   

9.
The present study was carried out to examine the development of pig oocytes after exposing to ultrasound under various conditions. When oocytes were exposed to ultrasound in the sorbitol medium, the blastocyst formation rate was significantly (P < 0.01) higher than that of oocytes exposed in HEPES-TLP-PVA. Optison, an echo-contrast microbubble, prevented the development into blastocysts of oocytes exposed to ultrasound in the sorbitol medium (P < 0.01). The mean number of cells in the blastocysts developed from oocytes exposed to ultrasound with 10% duty cycle was significantly (P < 0.05) higher than that obtained by using ultrasound with 50% duty cycle. The blastocyst formation rate of oocytes exposed to ultrasound for 30 sec was significantly (P < 0.05) higher than that exposed for 10 sec. There were no significant differences in the rates of oocytes developed to the blastocyst stage and the mean numbers of cells in the blastocysts among different intensities of ultrasound. The pronuclear formation and second polar body extrusion rates of oocytes exposed to ultrasound did not differ from eclectically activated oocytes. Although there was no significant difference in the blastocyst formation rates between different activation methods, the mean number of cells in the blastocysts developed from oocytes activated by exposing to ultrasound was significantly (P < 0.05) higher than that obtained by applying electric pulses. The results of the present study showed that ultrasound stimulation can induce the nuclear activation and parthenogenetic development of pig oocytes matured in vitro.  相似文献   

10.
This study investigated the effect of treatment with 6-dimethylaminopurine (6-DMAP) following fusion on in vitro development of porcine nuclear transfer (NT) embryos. Frozen thawed ear skin cells were transferred into the perivitelline space of enucleated oocytes. Reconstructed oocytes were fused and activated with electric pulse in 0.3 M mannitol supplemented with either 0.1 or 1.0 mM CaCl(2). In each calcium concentration, activated oocytes were divided into three groups. Two groups of them were exposed to either ionomycin (I + 6-DMAP or 6-DMAP alone. In experiment 2, fused NT embryos in 0.3 M mannitol containing 1.0 mM CaCl(2) were exposed to 6-DMAP either immediately or 20 min after fusion/activation. For 0.1 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed a higher (P < 0.05) developmental rate to the blastocyst stage than those activated with an electric pulse alone (26.7 and 22.5 vs. 12.5%). For 1.0 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed significantly higher (P < 0.05) developmental rate to the blastocyst stage (35.6 and 28.3 vs. 19.8%). Developmental rate to the blastocyst stage was (P < 0.05) increased in NT embryos activated with 6-DMAP 20 min after fusion. 6-DMAP made a higher and wider Ca(2+) transient compared to that induced by electric pulses (Fig. 3). The fluctuation lasted during the time that oocytes were cultured in 6-DMAP. Regardless of Ca(2+) concentration in fusion medium, activation with 6-DMAP following electric pulses supported more development of porcine NT embryos. Activation of NT embryos with 6-DMAP after fusion in the presence of 1.0 mM CaCl(2) could support better developmental rate to the blastocyst stage.  相似文献   

11.
Improvement of an electrical activation protocol for porcine oocytes   总被引:16,自引:0,他引:16  
Factors influencing pig oocyte activation by electrical stimulation were evaluated by their effect on the development of parthenogenetic embryos to the blastocyst stage to establish an effective activation protocol for pig nuclear transfer. This evaluation included 1) a comparison of the effect of epidermal growth factor and amino acids in maturation medium, 2) an investigation of interactions among oocyte age, applied voltage field strength, electrical pulse number, and pulse duration, and 3) a karyotype analysis of the parthenogenetic blastocysts yielded by an optimized protocol based on an in vitro system of oocyte maturation and embryo culture. In the first study, addition of amino acids in maturation medium was beneficial for the developmental competence of activated oocytes. In the second study, the developmental response of activated oocytes was dependent on interactions between oocyte age at activation and applied voltage field strength, voltage field strength and pulse number, and pulse number and duration. The formation of parthenogenetic blastocysts was optimal when activation was at 44 h of maturation using three 80-microsec consecutive pulses of 1.0 kV/cm DC. Approximately 84% of parthenogenetic blastocysts yielded by this protocol were diploid, implying a potential for further in vivo development.  相似文献   

12.
The effects of different activation methods and culture conditions on early development of porcine parthenotes were examined. Three different activation methods were tested: (1) electroporation; (2) electroporation followed by incubation in the presence of butyrolactone I, an inhibitor of cdc2 and cdk2 kinases; and (3) electroporation followed by a treatment with cycloheximide, a blocker of protein synthesis. The activated oocytes were cultured in two different media, NCSU-23 and PZM-3 under 5% CO2 in air. In a separate experiment, the effects of high (approximately 20%) or low (5%) O2 tension on early embryo development were also evaluated. The average pronuclear formation was less (p<0.05) in the electroporated oocytes (83.9+/-1.7%) compared with those activated by electroporation and butyrolactone I or electroporation plus cycloheximide (92.8+/-0.8 and 93.0+/-1.0%). In PZM-3 medium, the average frequencies of blastocyst formation (59.7+/-3.6%) and hatching (10.6+/-1.3%) were greater than those in NCSU-23 medium (39.9+/-3.1% blastocyst formation, p<0.05; and 0.2+/-0.2% hatching; p<0.001). Furthermore, the average nuclear number was also greater (p<0.001) in blastocysts developed in PZM-3 (50.2+/-1.3) than in those developed in NCSU-23 (35.3+/-1.1). Blastocyst formation was similar (p>0.10) among the three activation procedures when parthenotes were cultured in NCSU-23, while in PZM-3 more (p<0.05) parthenotes produced by electroporation plus butyrolactone or electroporation plus cycloheximide developed into blastocysts compared to electroporation alone (64.9+/-5.2 and 68.6+/-3.5% compared with 45.6+/-4.7%). Incidences of apoptotic nuclei were similar (p>0.10) among all treatments. No difference in development was found between parthenotes that developed under high versus low O2 tension (p>0.10). These results demonstrate that activation methods targeting the calcium signaling pathway at several points trigger embryonic development more efficiently than electroporation alone. The data also imply that the PZM-3 medium provides for enhanced culture conditions for the early development of parthenogenetic porcine embryos than NCSU-23.  相似文献   

13.
This study was conducted to examine the activities of maturation-promoting factor (MPF) and mitogen-activated protein (MAP) kinase in the porcine oocytes after artificial activation. To determine optimal electrical activation condition, oocytes were exposed to single DC pulse in a variety of electric field strengths (120, 150, 180, and 210 V/mm) and pulse durations (15, 30, 45, and 60 microsec). After the artificial activation, 40-50 oocytes were cultured in a 50 microl drop of NCSU23 medium supplemented with 0.4% BSA at 39 degrees C, 5% CO2 in air for 6 days. No difference was detected in the preimplantation development of pocine oocytes and the mean nuclei number of blastocysts between electric field strengths. Under the 180 V/mm electric field strength, short pulse durations (15 and 30 microsec) showed a higher preimplantation developmental rate of the oocytes and mean nuclei number of blastocysts than an extended electric pulse (60 microsec) (P < 0.05). Single electrical stimulus (180 V/mm, 15 microsec) resulted in higher preimplantation development of porcine oocytes as compared to other chemical stimulators (P < 0.01). Western blot analyses showed the decrease of MPF and MAP kinase in the electrically-activated oocytes. After single electrical stimulus, the amounts of both cdc2 and ERK in porcine oocytes were remarkably reduced by 4 hr and then further decreased by 8 hr. However, the chemically-stimulated oocytes did not show any significant change at the levels of MPF and MAP kinase. Our results indicate that the optimal single electrical pulse is effective on the inactivation of MPF and MAP kinase, eventually leading to the parthenogenetic development of porcine oocytes.  相似文献   

14.
Tseng JK  Tang PC  Ju JC 《Theriogenology》2006,66(5):1073-1082
The precise physiological causes that result in reduced development of oocytes after heat shock (HS) are not clear. In this study, apoptosis, heat shock protein70 (hsp70), and in vitro development of porcine oocytes were evaluated after HS. Porcine cumulus-oocyte complexes (COCs) were subjected to in vitro maturation for 42 h. The matured oocytes were then heated at 41.5 degrees C for 0 h (control, C0h), 1 h (HS1h), 2 h (HS2h), or 4 h (HS4h). An additional group of oocytes was cultured for 4 h without HS (control, C4h). In Experiment 1, expression of hsp70 was detected by Western-blotting and no difference between controls and HS groups was observed. In Experiment 2, apoptosis of matured oocytes after HS was examined by Annexin V-FITC and TUNEL. No significant TUNEL-positive signals were detected in the heated oocytes compared to the controls, but the intensity of Annexin V-FITC labeling among different groups increased with length of HS and in vitro culture (P<0.05). Oocytes were parthenogenetically activated by an electric pulse plus 6-DMAP (Experiment 3). Mean (+/-S.E.M.) embryonic development in HS2h (cleavage: 42+/-29%; blastocyst: 11+/-10%) and HS4h (cleavage: 36+/-28%; blastocyst: 11+/-8%) were decreased when compared to those in C0h (cleavage: 63+/-12%; blastocyst: 24+/-14%) and C4h (cleavage: 66+/-8%; blastocyst: 21+/-11%). Numbers of blastocysts with TUNEL-positive signals were similar among groups, but the signals increased before the eight-cell stage in HS groups (P<0.05). In conclusion, developmental competence of matured pig oocytes was compromised after heat shock, but it was not closely associated with the expression of oocyte hsp70. However, there may be a link between apoptosis and developmental competence of porcine oocytes.  相似文献   

15.
The appropriate in vitro bovine oocyte maturation and ethanol activation conditions for preimplantation bovine embryo parthenogenetic development to the blastocyst stage were investigated. A 7% ethanol concentration significantly enhanced (P<0.05) the proportion of activated, in vitro-matured bovine oocytes (7% ethanol, 83.4 +/- 3.2% versus 0% ethanol, 63.9 +/- 2.0%). The proportion of activated oocytes was significantly higher (P<0.05) by treatment with 7% ethanol for a minimum of 2 minutes (2 minutes, 89.8 +/- 4.0% versus 0.5 minutes 63.4 +/- 4.9%). Oocyte maturation for periods ranging from 30, 34, 38 and 44 hours resulted in a significant increase (P<0.05) in the proportion of activated oocytes, and in oocytes displaying 2 or 3 pronuclei versus oocytes matured for 26 hours. The proportion of cleaved, activated oocytes (2-cell stage), 4 -cell stage and parthenogenetic morula/blastocysts was significantly higher (P<0.05) within the 34-hour oocyte maturation treatment group. Although the 44-hour oocyte maturation treatment group displayed the highest proportion of activated oocytes with 2 pronuclei, it did not display the highest cleavage frequency, possibly due to the effects of postovulatory aging. Several morphologically normal parthenogenetic bovine blastocysts developed from oocytes that were in vitro matured for 34 hours. The ability to produce such parthenogenetic embryos will eventually facilitate investigation into the role(s) of the maternal and paternal genomes during bovine early development.  相似文献   

16.
17.
The objective of this study was to optimize the protocols for bovine oocytes activation through comparing the effectiveness of different treatments on the activation and subsequent development of oocytes and examining the effects of two combined activation treatments on the blastocyst apoptosis and ploidy. Cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After maturation, cumulus-free oocytes were activated according to the experiment designs. Activated oocytes were cultured in vitro in modified synthetic oviductal fluid (mSOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage. In Experiment 1, the matured oocytes were treated with single activation agents, including ionomycin (5 microM for 5 min), ethanol (7% for 7 min), calcium ionophore A23187 (5 microM for 5 min) or strontium (10mM for 5h). The pronuclear formation and cleavage rate were higher significantly in ionomycin (39.0 and 30.7%) and ethanol (41.5 and 28.1%) treatment alone compared to other treatments (9.7-25.2 and 11.3-23.7%, respectively, P<0.05). Very low blastocyst rates (3.9-5.3%) resulted which were not significantly different among treatments (P>0.05). For the combined activation treatment (Experiment 2), the same concentrations of ionomycin and ethanol as in Experiment 1 were used in combination with either 6-dimethylaminopurine (6-DMAP, 2.0 mM for 3 h) or cycloheximide (CHX)+cytochalasin B (CB, 10 microg/ml for 3 h). The pronuclear formation, cleavage rate, blastocyst rate and cell number of blastocyst were higher significantly (P<0.05) in ionomycin+6-DMAP treatment (67.1, 69.2, 28.0 and 91.3%, respectively) and ethanol+CHX+CB treatment (68.9, 70.2, 25.5 and 89.3%, respectively) compared to other treatments (11.7-58.1, 10.2-47.1, 1.5-24.2 and 34.2-62.7%, respectively). In Experiment 3, the parthenogenetic blastocysts produced by activation with ionomycin+6-DAMP and ethanol+CHX+CB and in vitro fertilized blastocysts (control group) were examined for apoptosis using a terminal deoxynucleotidyl transferase mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The ethanol+CHX+CB treatment (7.0%) showed significantly lower blastocyst apoptosis index compared to ionomycin+6-DAMP treatment (9.1%, P<0.05). Furthermore, the chromosomal composition in the parthenotes embryos differed (P<0.05) among treatments. The percentage of haploid parthenotes was higher in ionomycin+6-DMAP treatment than ethanol+CHX+CB treatment. These results suggested that ethanol+CHX+CB treatment was more favorable protocol for parthenogenesis of bovine oocytes.  相似文献   

18.
We investigated the electroactivation frequencies, type of activation and in vitro development of rabbit oocytes. In Experiment 1, activation (8 pulses, 12 min apart, 60 microsec, 0.6 kVcm(-1)) was performed by altering osmolarity (190 vs. 320 mOsm kg(-1)) and Ca++ concentration (10, 60 or 100 microM) in mannitol pulsing media. More oocytes were activated in hypotonic pulsing medium, regardless of Ca++ concentration (96 to 100%). Both haploid and diploid parthenogenetic embryos developed to compacted morulae (57 to 92% and 63 to 100%, respectively) regardless of the activation treatment; however, the blastocyst rates were more variable (0 to 74% and 0 to 73%, respectively). In Experiment 2, the effects of pulse duration (30 or 60 microsec) and number of applied pulses (4, 8 or 12) under hypotonic conditions were studied. Activation frequencies were the lowest after four 30 microsec-pulses (58 vs. 88 to 100%, respectively). A lower haploid frequency was obtained when more than four 30 or 60 microsec-pulses were applied (from 67 to 25% and 83 to 0%, respectively). Increasing the number of 60-microsec pulses improved the compacted morula rate of haploid and diploid oocytes (47 to 83% and 57 to 96%, respectively). Overall, haploid development to morulae and blastocysts was lower than diploid development to these stages (69 and 25% vs. 74 and 44%, respectively).  相似文献   

19.
Lee GS  Hyun SH  Kim HS  Kim DY  Lee SH  Lim JM  Lee ES  Kang SK  Lee BC  Hwang WS 《Theriogenology》2003,59(9):1949-1957
This study was conducted to improve a porcine somatic cell nuclear transfer (SCNT) technique by optimizing donor cell and recipient oocyte preparations. Adult and fetal fibroblasts, and cumulus and oviduct cells were used as donor cells, and in vivo- and in vitro-matured oocytes were employed as recipient oocytes. The percentages of fusion and development to the blastocyst stage, the ratio of blastocysts to 2-cell embryos, and cell number of blastocysts were monitored as experimental parameters. In Experiment 1, donor cells of four different types were transferred to enucleated oocytes matured in vitro, and more (P < 0.05) blastocysts were derived from SCNT of fetal fibroblasts than from that of other cells (15.9% versus 3.1-7.9%). For SCNT using fetal fibroblasts, increasing the number of subcultures up to 15 times did not improve developmental competence to the blastocyst stage (12.2-16.7%). In Experiment 2, fetal fibroblasts were transferred to enucleated oocytes that matured in vivo or in vitro. When parthenogenetic activation of both types of oocytes was conducted as a preliminary control treatment, a significant increase in blastocyst formation was found for in vivo-matured compared with in vitro-matured oocytes (36.4% versus 29.5%). However, no improvement was achieved in SCNT using in vivo-matured oocytes. In conclusion, the type of donor somatic cell is important for improving development after porcine SCNT, and fetal fibroblasts were the most effective among examined cells. A system with good reproducibility has been established using fetal fibroblasts as the donor karyoplast after subculturing 1-10 times, and using both in vivo and in vitro-matured oocytes as the recipient cytoplast.  相似文献   

20.
Recently, a non-invasive delipation (lipid removal) method combined with ultrarapid vitrification has been used successfully for in vitro produced (IVP) porcine embryos. In the present study, this method was combined with parthenogenesis and a recent form of somatic cell nuclear transfer (SCNT) - handmade cloning (HMC) - to establish a simplified and efficient cryopreservation system for porcine cloned embryos. In Experiment 1, zonae pellucidae of oocytes were partially digested with pronase, followed by centrifugation to polarize lipid particles. Ninety percent (173/192) oocytes were successfully delipated in this way. Parthenogenetic activation (PA) after complete removal of zona resulted in similar blastocyst rates in delipated vs. control oocytes (28+/-7% vs. 28+/-5%, respectively). Subsequent vitrification of produced blastocysts with the Cryotop technique resulted in higher survival rates in the delipated group compared to the control group (85+/-6% vs. 32+/-7%, respectively; P<0.01). In Experiment 2, delipated oocytes were used for HMC with normal oocytes as control. Partial zona digestion was further applied before enucleation both in delipated and control groups, to bisect oocyte successfully. Although the blastocyst rate of reconstructed embryos was similar between groups derived from delipated vs. control oocytes (21+/-6% and 23+/-6%, respectively), after vitrification higher survival rates were achieved in the delipated groups than in controls (79+/-6% vs. 32+/-8%, respectively). Our results prove that porcine embryos produced from delipated oocytes by PA or HMC can be cryopreserved effectively by ultrarapid vitrification. Further experiments are required to assess the in vivo developmental competence of the cloned-vitrified embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号