首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in the gigaxonin gene are responsible for giant axonal neuropathy (GAN), a progressive neurodegenerative disorder associated with abnormal accumulations of Intermediate Filaments (IFs). Gigaxonin is the substrate-specific adaptor for a new Cul3-E3-ubiquitin ligase family that promotes the proteasome dependent degradation of its partners MAP1B, MAP8 and tubulin cofactor B. Here, we report the generation of a mouse model with targeted deletion of Gan exon 1 (Gan(Deltaexon1;Deltaexon1)). Analyses of the Gan(Deltaexon1;Deltaexon1) mice revealed increased levels of various IFs proteins in the nervous system and the presence of IFs inclusion bodies in the brain. Despite deficiency of full length gigaxonin, the Gan(Deltaexon1;Deltaexon1) mice do not develop overt neurological phenotypes and giant axons reminiscent of the human GAN disease. Nonetheless, at 6 months of age the Gan(Deltaexon1;Deltaexon1) mice exhibit a modest hind limb muscle atrophy, a 10% decrease of muscle innervation and a 27% axonal loss in the L5 ventral roots. This new mouse model should provide a useful tool to test potential therapeutic approaches for GAN disease.  相似文献   

2.
Association of spectrin with desmin intermediate filaments   总被引:5,自引:0,他引:5  
The association of erythrocyte spectrin with desmin filaments was investigated using two in vitro assays. The ability of spectrin to promote the interaction of desmin filaments with membranes was investigated by electron microscopy of desmin filament-erythrocyte inside-out vesicle preparations. Desmin filaments bound to erythrocyte inside-out vesicles in a spectrin-dependent manner, demonstrating that spectrin is capable of mediating the association of desmin filaments with plasma membranes. A quantitative sedimentation assay was used to demonstrate the direct association of spectrin with desmin filaments in vitro. When increasing concentrations of spectrin were incubated with desmin filaments, spectrin cosedimented with desmin filaments in a concentration-dependent manner. At near saturation the spectrin:desmin molar ratio in the sedimented complex was 1:230. Our results suggest that, in addition to its well characterized associations with actin, spectrin functions to mediate the association of intermediate filaments with plasma membranes. It might be that nonerythrocyte spectrins share erythrocyte spectrin's ability to bind to intermediate filaments and function in nonerythroid cells to promote the interaction of intermediate filaments with actin filaments and/or the plasma membrane.  相似文献   

3.
Co-migration experiments by two-dimensional SDS-PAGE using chicken spinal cord extracts and desmin purified from chicken gizzard showed that desmin is not present in spinal cord. However, by the immunoblotting procedure, desmin antibodies recognized 3 spinal cord antigens with different molecular weights and isoelectric points than desmin and the glial fibrillary acidic (GFA) protein. These antigens which also reacted with GFA protein antibodies were not identified in chicken gizzard extracts. The reactivity of the antigens with a monoclonal antibody recognizing an epitope common to most intermediate filament proteins (1) suggests that immunostaining of astrocytes with desmin antibodies (2, 3) is due to the presence of new intermediate filament proteins immunologically related to desmin.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

4.
Research over the past few years on the function of intermediate filaments in cells in culture has not produced convincing results, because the key role of intermediate filaments is within tissues and at certain periods of development. Only recently the technique of gene knockout has been used to examine intermediate filaments in mice and has provided the first evidence that intermediate filaments are directly involved in cell resilience and the maintenance of tissue integrity. Knockout of the gene encoding keratin K8 is lethal in the embryo, and results in hepatic or intestinal lesions, while knockout of the K14 or K10 genes leads to rupture of stratified epithelia. Knockout of the gene encoding desmin causes the rupture of skeletal and cardiac muscle, and collapse of blood vessel walls. Knockout of the gene coding for GFAP leads to a loss of cerebral white matter, and knockout of the gene coding for vimentin causes degeneration of the cerebellar Purkinje cells. The results reveal the lack of compensation by another intermediate filament. Tissues without intermediate filaments fall apart; they are mechanically unstable, unable to resist physical stress, and this leads to cell degeneration. By maintaining the shape and plasticity of the cell, the intermediate filament network acts as an integrator within the cell space. The state of mechanical force imposed on a tissue or a cell can alter the shape of certain elements of the cytoskeleton and thus participate to the control of cell functions.  相似文献   

5.
Conditions were found at the analytical level for the solubilization of a recombinant insulin precursor from inclusion bodies in different buffer systems at a wide pH range in the presence of different reducing (dithiothreitol, dithioerythritol) and chaotropic agents (urea, guanidine hydrochloride) and the subsequent renaturation with the use of redox pairs (cysteine-cystine, oxidized glutathione-reduced glutathione, and others). The scaling of the method for the production of the active substance of genetically engineered human insulin has been performed.  相似文献   

6.
Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.  相似文献   

7.
Bacterial inclusion bodies are major bottlenecks in protein production, narrowing the spectrum of relevant polypeptides obtained by recombinant DNA. While regarded as amorphous deposits formed by passive and rather unspecific precipitation of unfolded chains, we prove here that they are instead organized aggregates sharing important structural and biological features with amyloids. By using an Escherichia coli beta-galactosidase variant, we show that aggregation does not necessarily require unfolded polypeptide chains but rather depends on specific interactions between solvent-exposed hydrophobic stretches in partially structured species. In addition, purified inclusion bodies are efficient and highly selective nucleation seeds, promoting deposition of soluble homologous but not heterologous polypeptides in a dose-dependent manner. Finally, inclusion bodies bind amyloid-diagnostic dyes, which, jointly with Fourier transform infra red spectroscopy data, indicates a high level of organized intermolecular beta-sheet structure. The evidences of amyloid-like structure of bacterial inclusion bodies, irrespective of potential applications in bioprocess engineering, prompts the use of bacterial models to explore the molecular determinants of protein aggregation by means of simple biological systems.  相似文献   

8.
Protein folding is often accompanied by formation of non-native conformations leading to protein aggregation. A number of reports indicate that antibodies can facilitate folding and prevent aggregation of protein antigens. The influence of antibodies on folding is strictly antigen specific. Chaperone-like antibody activity may be due to the stabilization of native antigen conformations or folding transition states, or screening of aggregating hydrophobic surfaces. Taking advantage of chaperone-like activity of antibodies for immunotherapy may prove to be a promising approach to the treatment of Alzheimers and prion-related diseases. Antibody-assisted folding may enhance renaturation of recombinant proteins from inclusion bodies.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1515–1521.Original Russian Text Copyright © 2004 by Ermolenko, Zherdev, Dzantiev.  相似文献   

9.
Amino acid sequence data for intermediate filament proteins have been analysed with a view to identifying structurally invariant segments and determining their likely secondary structure. The sequences in these segments have also been analysed for periodic distributions of particular types of residue. The results support the classification of intermediate filament proteins into three main groups and also reinforce the concept of a molecular structure with a central domain of coiled-coil segments, together with essentially non-helical N-terminal and C-terminal domains of variable size and composition. Regions exhibiting the greatest homology between the three types of IF chain are identified and significant variation in charged residue disposition along the length of individual chains is noted. The conservation in all IF protein chains of specific sites of coiled-coil rope interruption are discussed in terms of the probable molecular structure. Stabilizing ionic interactions between coiled-coil chain segments have been investigated quantitatively as a function of the relative chain stagger. In all cases and calculations favour ropes in which the constituent chains are in-register and parallel rather than antiparallel.  相似文献   

10.
Proteins are commonly fused to Escherichia coli maltose-binding protein (MBP) to enhance their yield and facilitate their purification. In addition, the stability and solubility of a passenger protein can often be improved by fusing it to MBP. In a previous comparison with two other highly soluble fusion partners, MBP was decidedly superior at promoting the solubility of a range of aggregation-prone proteins. To explain this observation, we proposed that MBP could function as a general molecular chaperone in the context of a fusion protein by binding to aggregation-prone folding intermediates of passenger proteins and preventing their self-association. The ligand-binding cleft in MBP was considered a likely site for peptide binding because of its hydrophobic nature. We tested this hypothesis by systematically replacing hydrophobic amino acid side chains in and around the cleft with glutamic acid. None of these mutations affected the yield or solubility of MBP in its unfused state. Each MBP was then tested for its ability to promote solubility when fused to three passenger proteins: green fluorescent protein, p16, and E6. Mutations within the maltose-binding cleft (W62E, A63E, Y155E, W230E, and W340E) had little or no effect on the solubility of the fusion proteins. In contrast, three mutations near one end of the cleft (W232E, Y242E, and I317E) dramatically reduced the solubility of the same fusion proteins. The mutations with the most profound effect on solubility were shown to reduce the global stability of MBP.  相似文献   

11.
In Huntington's disease (HD), as in the rest of CAG triplet-repeat disorders, the expanded polyglutamine (polyQ)-containing proteins form intraneuronal fibrillar aggregates that are gathered into inclusion bodies (IBs). Since IBs contain ubiquitin and proteasome subunits, it was proposed that inhibition of proteasome activity might underlie pathogenesis of polyQ disorders. Recent in vitro enzymatic studies revealed the inability of eukaryotic proteasomes to digest expanded polyQ, thus suggesting that occasional failure of polyQ to exit the proteasome may interfere with its proteolytic function. However, it has also recently been found that in vitro assembled aggregates made of synthetic polyQ fail to inhibit proteasome activity. Because synthetic polyQ aggregates lack the post-translational modifications found inside affected neurons, such as poly ubiquitylation, we decided to study the effect of mutant huntingtin (htt) aggregates isolated from the Tet/HD94 mouse model and from human HD brain tissue. Here, we show that isolated ubiquitylated filamentous htt aggregates, extracted from IBs by a previously reported method, selectively inhibited the in vitro peptidase activity of the 26S but not of the 20S proteasome in a non-competitive manner. In good agreement, immuno-electron microscopy revealed a direct interaction of htt filaments with the 19S ubiquitin-interacting regulatory caps of the 26S proteasome. Here, we also report a new method for isolation of IBs based on magnetic sorting. Interestingly, isolated IBs did not modify proteasome activity. Our results therefore show that mutant htt filamentous aggregates can inhibit proteasome activity, but only when not recruited into IBs, thus strengthening the notion that IB formation is protective by neutralizing toxicity of dispersed filamentous htt aggregates.  相似文献   

12.
Keratin polypeptides 8 and 18 (K8/18) are intermediate filament (IF) proteins that are expressed in glandular epithelia. Although the mechanism of keratin turnover is poorly understood, caspase-mediated degradation of type I keratins occurs during apoptosis and the proteasome pathway has been indirectly implicated in keratin turnover based on colocalization of keratin-ubiquitin antibody staining. Here we show that K8 and K18 are ubiquitinated based on cotransfection of His-tagged ubiquitin and human K8 and/or K18 cDNAs, followed by purification of ubiquitinated proteins and immunoblotting with keratin antibodies. Transfection of K8 or K18 alone yields higher levels of keratin ubiquitination as compared with cotransfection of K8/18, likely due to stabilization of the keratin heteropolymer. Most of the ubiquitinated species partition with the noncytosolic keratin fraction. Proteasome inhibition stabilizes K8 and K18 turnover, and is associated with accumulation of phosphorylated keratins, which indicates that although keratins are stable they still turnover. Analysis of K8 and K18 ubiquitination and degradation showed that K8 phosphorylation contributes to its stabilization. Our results provide direct evidence for K8 and K18 ubiquitination, in a phosphorylation modulated fashion, as a mechanism for regulating their turnover and suggest that other IF proteins could undergo similar regulation. These and other data offer a model that links keratin ubiquitination and hyperphosphorylation that, in turn, are associated with Mallory body deposits in a variety of liver diseases.  相似文献   

13.
14.
Protein aggregation is a major bottleneck during the bacterial production of recombinant proteins. In general, the induction of gene expression at sub-optimal growth temperatures improves the solubility of aggregation-prone polypeptides and minimizes inclusion body (IB) formation. However, the effect of low temperatures on the quality of the recombinant protein, especially within the insoluble cell fraction, has been hardly ever explored. In this work, we have examined the conformational status of a recombinant GFP protein when produced in Escherichia coli below 37 degrees C. As expected, the fraction of aggregated protein largely decreased at lower temperatures, while the conformational quality of both soluble and aggregated GFP, as reflected by its specific fluorescence emission, progressively improved. This observation indicates that physicochemical conditions governing protein folding affect concurrently the quality of the soluble and the aggregated forms of a misfolding-prone protein, and that protein misfolding and aggregation are clearly not coincident events.  相似文献   

15.
Although it is usually possible to achieve a favorable yield of a recombinant protein in Escherichia coli, obtaining the protein in a soluble, biologically active form continues to be a major challenge. Sometimes this problem can be overcome by fusing an aggregation-prone polypeptide to a highly soluble partner. To study this phenomenon in greater detail, we compared the ability of three soluble fusion partners--maltose-binding protein (MBP), glutathione S-transferase (GST), and thioredoxin (TRX)--to inhibit the aggregation of six diverse proteins that normally accumulate in an insoluble form. Remarkably, we found that MBP is a far more effective solubilizing agent than the other two fusion partners. Moreover, we demonstrated that in some cases fusion to MBP can promote the proper folding of the attached protein into its biologically active conformation. Thus, MBP seems to be capable of functioning as a general molecular chaperone in the context of a fusion protein. A model is proposed to explain how MBP promotes the solubility and influences the folding of its fusion partners.  相似文献   

16.
17.
Misfolding-prone proteins produced in bacteria usually fail to adopt their native conformation and aggregate. In cells producing folding-reluctant protein species, folding modulators are supposed to be limiting, a fact that enhances protein deposition. Therefore, coproducing DnaK or other main chaperones along with the target protein has been a common approach to gain solubility, although with very inconsistent and often discouraging results. In an attempt to understand the reason for this inconsistency, the impact of exogenous DnaK (encoded in an accompanying plasmid) on two protein features observed as indicators of protein quality, namely solubility and functionality, has been analysed here through the specific fluorescence emission of a reporter Green Fluorescent Protein (GFP). Intriguingly, GFP solubility is strongly dependent on its own yield but poorly affected by DnaK levels. On the contrary, the specific fluorescence of both soluble and insoluble GFP populations is simultaneously modulated by the availability of DnaK, with a profile that is clearly dissimilar to that shown by protein solubility. Therefore, solubility, not being coincident with the biological activity of the target protein, might not be a robust indicator of protein quality.  相似文献   

18.
Baohui Jia  Yuying Wu  Yi Zhou 《朊病毒》2014,8(2):173-177
Protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative diseases. In addition to chaperone-mediated refolding and proteasomal degradation, the aggresome-macroautophagy pathway has emerged as another defense mechanism for sequestration and clearance of toxic protein aggregates in cells. Previously, the 14-3-3 proteins were shown to be indispensable for the formation of aggresomes induced by mutant huntingtin proteins. In a recent study, we have determined that 14-3-3 functions as a molecular adaptor to recruit chaperone-associated misfolded proteins to dynein motors for transport to aggresomes. This molecular complex involves a dimeric binding of 14-3-3 to both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3). As 14-3-3 has been implicated in various neurodegenerative diseases, our findings may provide mechanistic insights into its role in managing misfolded protein stress during the process of neurodegeneration.  相似文献   

19.
Mice fed griseofulvin, an antibiotic with antimicrotubular activity, formed hepatocellular aggregates of intermediate filaments, which resembled those associated with human alcoholic liver disease. These aggregates, termed Mallory bodies, were isolated from both human and mouse liver and the composition of these structures compared. Electrophoretic analysis indicated that the mouse filaments were composed of four major polypeptides (51,000, 47,000, 37,000, and 36,000 daltons). Human Mallory bodies possessed a similar number of components but of different molecular weights (56,000, 51,000, 50,000, and 38,000 daltons). Guinea pig antisera prepared against both whole human Mallory bodies and the major human polypeptide (56,000 daltons) crossreacted with mouse Mallory body material in both immunochemical and immunocytochemical systems. Our findings suggest that the two filament systems possess similar biochemical and immunological properties.  相似文献   

20.
We previously identified and characterized amino acid substitutions in a loop connecting helix I to strand B, the alphaI/betaB loop, of the N-domain that are critical for in vivo folding of the maltose-binding protein (MalE31). The tertiary context-dependence of this mutation in MalE folding was assessed by probing the tolerance of an equivalent alphabeta loop of the C-domain to the same amino acid substitutions (MalE219). Moving the loop mutation from the N- to the C-domain eliminated the in vivo misfolding step that led to the formation of inclusion bodies. In vitro, both loop variants exhibited an important decrease of stability, but their intrinsic tendency to aggregate was well correlated with their periplasmic fates in Escherichia coli. Furthermore, the noncoincidence of the unfolding and refolding transition curves and increase of light scattering during the refolding of MalE31 indicate that a competing off-pathway reaction could occurs on the folding pathway of this variant. These results strongly support the notion that the formation of super-secondary structures of the N-domain is a rate-limiting step in the folding pathway of MalE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号