首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The mechanism of binding of L-serine to tryptophan synthase, which is the initial phase of the catalytic mechanism, has been studied by steady-state and stopped-flow kinetic techniques. The dependence of three separable rate processes on the concentration of L-serine is compatible with four different enzyme-substrate complexes, one of which lies on a branch in the pathway. By use of L-serine deuterated at the alpha carbon, it is possible to assign the deprotonation of the external aldimine of L-serine with pyridoxal 5'-phosphate to the most rapid observable binding step. Measurements at two pH values show that the rate-determining step in the synthesis of L-tryptophan changes from release of L-tryptophan at the optimal pH of 7.6 to the binding of L-serine at pH 6.5. Measurements at pH 7.6 in the presence of the substrate analogue indolepropanol phosphate show that the stronger binding of L-serine is probably due to stabilization of the catalytically competent enzyme--L-serine complex. At pH 7.6 L-serine is bound far more slowly to the beta 2 subunit than to the alpha 2 beta 2 complex of tryptophan synthase and retains its alpha carbon proton. For the beta 2 subunit, the rate-determining step of tryptophan synthesis is deprotonation of bound L-serine. The effect of bound alpha subunit is to increase both the rate of deprotonation and beta-elimination, shifting the rate-limiting step to the release of L-tryptophan.  相似文献   

3.
Five monoclonal antibodies recognizing five different epitopes of the native beta 2 subunit of Escherichia coli tryptophan synthase (EC 4.1.2.20) were used to analyze the conformational changes occurring upon ligand binding or chemical modifications of the enzyme. For this purpose, the affinities of each antibody for the different forms of the enzyme were determined by using an enzyme-linked immunosorbent assay which allows measurement of the dissociation constant of antigen-antibody equilibrium in solution. The fixation of the coenzyme pyridoxal 5'-phosphate and the substrate L-serine modifies the affinity constants of most of the antibodies for the enzyme, thus showing the existence of extended conformational rearrangements of the protein. The association of the alpha subunit with the beta 2 subunit, which brings about an increase of the tryptophan synthase activity and abolishes the serine deaminase activity of beta 2, is accompanied by an important conformational change of the N-terminal domain of beta 2 (F1) since none of the anti-F1 monoclonal antibodies can bind to alpha 2 beta 2. Similarly, chemical modifications of beta 2 which are known to produce significant effects on the enzymatic activities of beta 2 result in changes of the affinities of the monoclonal antibodies which can be interpreted as the acquisition of different conformational states of the enzyme.  相似文献   

4.
K Tanizawa  E W Miles 《Biochemistry》1983,22(15):3594-3603
Inactivation of the beta 2 subunit and of the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli by the arginine-specific dicarbonyl reagent phenylglyoxal results from modification of one arginyl residue per beta monomer. The substrate L-serine protects the holo beta 2 subunit and the holo alpha 2 beta 2 complex from both inactivation and arginine modification but has no effect on the inactivation or modification of the apo forms of the enzyme. This result and the finding that phenylglyoxal competes with L-serine in reactions catalyzed by both the holo beta 2 subunit and the holo alpha 2 beta 2 complex indicate that L-serine and phenylglyoxal both bind to the same essential arginyl residue in the holo beta 2 subunit. The apo beta 2 subunit is protected from phenylglyoxal inactivation much more effectively by phosphopyridoxyl-L-serine than by either pyridoxal phosphate or pyridoxine phosphate, both of which lack the L-serine moiety. The phenylglyoxal-modified apo beta 2 subunit binds pyridoxal phosphate and the alpha subunit but cannot bind L-serine or L-tryptophan. We conclude that the alpha-carboxyl group of L-serine and not the phosphate of pyridoxal phosphate binds to the essential arginyl residue in the beta 2 subunit. The specific arginyl residue in the beta 2 subunit which is protected by L-serine from modification by phenyl[2-14C]glyoxal has been identified as arginine-148 by isolating a labeled cyanogen bromide fragment (residues 135-149) and by digesting this fragment with pepsin to yield the labeled dipeptide arginine-methionine (residues 148-149). The primary sequence near arginine-148 contains three other basic residues (lysine-137, arginine-141, and arginine-150) which may facilitate anion binding and increase the reactivity of arginine-148. The conservation of the arginine residues 141, 148, and 150 in the sequences of tryptophan synthase from E. coli, Salmonella typhimurium, and yeast supports a functional role for these three residues in anion binding. The location and role of the active-site arginyl residues in the beta 2 subunit and in two other enzymes which contain pyridoxal phosphate, aspartate aminotransferase and glycogen phosphorylase, are compared.  相似文献   

5.
When the tryptophan synthase alpha- and beta(2)-subunits combine to form the alpha(2)beta(2)-complex, the enzymatic activity of each subunit is stimulated by 1-2 orders of magnitude. To elucidate the structural basis of this mutual activation, it is necessary to determine the structures of the alpha- and beta-subunits alone and together with the alpha(2)beta(2)-complex. The crystal structures of the tryptophan synthase alpha(2)beta(2)-complex from Salmonella typhimurium (Stalpha(2)beta(2)-complex) have already been reported. However, the structures of the subunit alone from mesophiles have not yet been determined. The structure of the tryptophan synthase alpha-subunit alone from Escherichia coli (Ecalpha-subunit) was determined by an X-ray crystallographic analysis at 2.3 A, which is the first report on the subunits alone from the mesophiles. The biggest difference between the structures of the Ecalpha-subunit alone and the alpha-subunit in the Stalpha(2)beta(2)-complex (Stalpha-subunit) was as follows. Helix 2' in the Stalpha-subunit, including an active site residue (Asp60), was changed to a flexible loop in the Ecalpha-subunit alone. The conversion of the helix to a loop resulted in the collapse of the correct active site conformation. This region is also an important part for the mutual activation in the Stalpha(2)beta(2)-complex and interaction with the beta-subunit. These results suggest that the formation of helix 2'that is essential for the stimulation of the enzymatic activity of the alpha-subunit is constructed by the induced-fit mode involved in conformational changes upon interaction between the alpha- and beta-subunits. This also confirms the prediction of the conformational changes based on the thermodynamic analysis for the association between the alpha- and beta-subunits.  相似文献   

6.
The rate-limiting step in the folding of the alpha subunit of tryptophan synthase has been proposed to be the association of two folding units. To probe the role of diffusion in this rate-limiting step, the urea-induced unfolding and refolding of the protein was examined in the presence of a number of viscosity-enhancing agents. The analysis was simplified by studying the effect of these agents on folding unit dissociation, the rate-limiting unfolding reaction, and the reverse of the rate-limiting step in refolding. In the presence of ethylene glycol, the relaxation times for unfolding to the same final conditions increased with increasing concentration of the cosolvent. When the effects of the cosolvent on protein stability were taken into account, the rates were found to show a unitary linear dependence on the viscosity of the solution. Similar results were obtained with glycerol and low concentrations of glucose, demonstrating that the effect is general and not specific to any viscogenic agent. These results clearly demonstrate that the rate-limiting folding unit association/dissociation reaction in the alpha subunit of tryptophan synthase involves a diffusional process.  相似文献   

7.
8.
We have synthesized bromoacetylpyridoxamine phosphate and bromoacetylpyridoxamine and have shown that they meet three criteria for affinity labels of the beta2 subunit of tryptophan synthase: (i) the kinetic data of inactivation indicate that a binary complex is formed prior to covalent attachment; (ii) inactivation is largely prevented by the presence of pyridoxal phosphate; and (iii) inactivation is stoichiometric with incorporation of 0.7 to 0.8 mol of chromophore/mol of beta monomer. Our conclusion that inactivation of the apo beta2 subunit by bromoacetylpyridoxamine phosphate is due to the modification of cysteine is based on the disappearance of 1 mol of -SH/beta monomer and on the finding that [14C]carboxymethyl derivative in the acid hydrolysate of the protein modified by bromo[14C]acetylpyridixamine phosphate. A 39-residue tryptic peptide containing this essential cysteine has been isolated and purified from the bromo[14C]acetylpyridoxamine phosphate-labeled beta2 subunit.  相似文献   

9.
The tryptophan synthase alpha 2 beta 2 complex catalyzes tryptophan (Trp) biosynthesis from serine plus either indole (IN) or indole-3-glycerol phosphate (InGP). The photoreactive 5-azido analog in IN (AzIN), itself a substrate in the dark, was utilized to examine the substrate binding sites on this enzyme. When irradiated with AzIN at concentrations approaching IN saturation for the IN----Trp activity (0.1 mM), in the absence of serine, the enzyme was increasingly inactivated (up to 70-80%) concomitant with the progressive binding of a net of 2 mol AzIN per alpha beta equivalent. Little or no cooperativity in the binding of the 2 mol AzIN was observed. In contrast, there was minimal effect on the IN----InGP activity. Under these conditions AzIN appeared to be incorporated equally into each subunit. No significant inactivation nor binding occurred in the presence of serine. A quantitatively similar inactivation of InGP----Trp activity was observed over the same AzIN concentration range, suggesting common IN sites for Trp biosynthesis from either indole substrate. At higher concentrations (0.1-0.7 mM), no further inactivation occurred, although there was extensive additional binding (up to 10 mol/alpha beta equivalent). These data are consistent, although more clear-cut quantitatively, with the high- and low-affinity sites proposed from equilibrium dialysis studies. AzIN binding studies utilizing the isolated beta 2 subunit confirmed earlier reports suggesting the existence of many nonspecific IN binding sites on this subunit.  相似文献   

10.
Tryptophan synthase of Neurospora crassa was purified to electrophoretic homogeneity from the wild type strain 74A which had been derepressed by the presence of 0.5 mM indoleacrylic acid in the growth medium. The isolated material migrated as a single symmetrical peak in the ultracentrifuge with a sedimentation constant of 6.0 S. Gel filtration on Sephadex G-200 AND CONVENTIONAL SEDIMENTATION EQUILIBIRIUM YIELDED MOLECULAR WEIGHT ESTIMATES OF 151,000 PLUS AND MINUS 10,000 AND 149,000 PLUS AND MINUS 10,000, RESPECTIVELY. Treatment of the enzyme with sodium dodecyl sulfate followed by polyacrylamide gel electrophoresis gave a single band with a relative mobility suggesting a molecular weight of 76,000 plus and minus 2000. Aspartic acid was the only detectable NH2-terminal amino acid and experiments with carboxypeptides A and B revealed that the three amino acids, isoleucine, leucine, and phenylalanine, were released rapidly and in the order mentioned. These results are interpreted as indicating that the Neurospora enzyme is a homodimer.  相似文献   

11.
Previous studies on the refolding of the alpha subunit of tryptophan synthase from Escherichia coli assigned two slow refolding phases to rate-limiting isomerizations of two 'essential' proline residues, one in each of the two domains of the protein (Matthews, C.R., Crisanti, M.M., Manz, J.T. and Gepner, G.L. (1983) Biochemistry 22, 1445-1452). The double-jump experiment (Brandts, J.F., Halvorson, H.R. and Brennan, M. (1975) Biochemistry 14, 4953-4963) was used to further investigate this phenomenon. The reaction assigned to the carboxyl domain is consistent with the proline isomerization hypothesis. The amino domain process is more rapid than expected for proline isomerization and may reflect another type of slow folding reaction. The results permit a further refinement of the folding model for the alpha subunit and demonstrate the existence of a third unfolded species whose folding is not limited by either of these two reactions.  相似文献   

12.
The urea-induced equilibrium unfolding of the alpha subunit of tryptophan synthase (alphaTS), a single domain alpha/beta barrel protein, displays a stable intermediate at approximately 3.2 M urea when monitored by absorbance and circular dichroism (CD) spectroscopy (Matthews CR, Crisanti MM, 1981, Biochemistry 20:784-792). The same experiment, monitored by one-dimensional proton NMR, shows another cooperative process between 5 and 9 M urea that involves His92 (Saab-Rincón G et al., 1993, Biochemistry 32:13,981-13,990). To further test and quantify the implied four-state model, N <--> I1 <--> I2 <--> U, the urea-induced equilibrium unfolding process was followed by tyrosine fluorescence total intensity, tyrosine fluorescence anisotropy and far-UV CD. All three techniques resolve the four stable states, and the transitions between them when the FL total intensity and CD spectroscopy data were analyzed by the singular value decomposition method. Relative to U, the stabilities of the N, I1, and I2 states are 15.4, 9.4, and 4.9 kcal mol(-1), respectively. I2 partially buries one or more of the seven tyrosines with a noticeable restriction of their motion; it also recovers approximately 6% of the native CD signal. This intermediate, which is known to be stabilized by the hydrophobic effect, appears to reflect the early coalescence of nonpolar side chains without significant organization of the backbone. I1 recovers an additional 43% of the CD signal, further sequesters tyrosine residues in nonpolar environments, and restricts their motion to an extent similar to N. The progressive development of a higher order structure as the denaturant concentration decreases implies a monotonic contraction in the ensemble of conformations that represent the U, I2, I1, and N states of alphaTS.  相似文献   

13.
Summary The inherent infidelity of Taq DNA polymerase in the polymerase chain reaction was exploited to produce random mutations in thetrp A gene. Screening of the resulting clones allowed selection of non-interactive mutant subunits retaining their intrinsic catalytic activity. Two single changes responsible for this phenotype were identified by DNA sequencing as: 126 valine (GTG)glutamic acid (GAG) and 128 valine (GTT)aspartic acid (GAT). Three single changes giving a non-interactive phenotype with an impaired intrinsic catalytic activity were identified by DNA sequencing as a66 asparagine (AAC)aspartic acid (GAC); 109lysine (AAA) arginine (AGA); 118 cysteine (TGC)arginine (CGC). Where possible, we individually assessed the importance of these residues in interaction in light of structural information from X-ray crystallography and by intergeneric protein sequence comparison.  相似文献   

14.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

15.
A N Lane  K Kirschner 《Biochemistry》1991,30(2):479-484
The physiological synthesis of L-tryptophan from indoleglycerol phosphate and L-serine catalyzed by the alpha 2 beta 2 bienzyme complex of tryptophan synthase requires spatial and dynamic cooperation between the two distant alpha and beta active sites. The carbanion of the adduct of L-tryptophan to pyridoxal phosphate accumulated during the steady state of the catalyzed reaction. Moreover, it was formed transiently and without a lag in single turnovers, and glyceraldehyde 3-phosphate was released only after formation of the carbanion. These and further data prove first that the affinity for indoleglycerol phosphate and its cleavage to indole in the alpha subunit are enhanced substantially by aminoacrylate bound to the beta subunit. This indirect activation explains why the turnover number of the physiological reaction is larger than that of the indoleglycerol phosphate cleavage reaction. Second, reprotonation of nascent tryptophan carbanion is rate limiting for overall tryptophan synthesis. Third, most of the indole generated in the active site of the alpha subunit is transferred directly to the active site of the beta subunit and only insignificant amounts pass through the solvent. Comparison of the single turnover rate constants with the known elementary rate constants of the partial reactions catalyzed by the alpha and beta active sites suggests that the cleavage reaction rather than the transfer of indole or its condensation with aminoacrylate is rate limiting for the formation of nascent tryptophan.  相似文献   

16.
In vitro mutagenesis techniques have been used to investigate two structure-function questions relating to the allosteric citrate synthase of Escherichia coli. The first question concerns the binding site of alpha-keto-glutarate, which is a structural analogue of the substrate oxaloacetate and yet has been suggested to be an allosteric inhibitor of the enzyme. Using oligonucleotide-directed mutagenesis of the cloned E. coli citrate synthase gene, we prepared missense mutants, designated CS226H----Q and CS229H----Q, in which histidine residues at positions 226 and 229, respectively, were replaced by glutamine. In the homologous pig heart citrate synthase it is known (Wiegand, G., and Remington, S. J. (1986) Annu. Rev. Biophys. Biophys. Chem. 15, 97-117) that the equivalent of His-229 helps to bind oxaloacetate, while the equivalent of His-226 is nearby. Kinetic and ligand binding measurements showed that CS226H----Q had a reduced affinity for oxaloacetate and alpha-ketoglutarate, while CS229H----Q bound oxaloacetate even less effectively, and was not inhibited by alpha-ketoglutarate at all under our conditions. This parallel loss of binding affinities for oxaloacetate and alpha-ketoglutarate, in two mutants altered in residues at the active site of E. coli citrate synthase, strongly suggests that inhibition of this enzyme by alpha-ketoglutarate is not allosteric but occurs by competitive inhibition at the active site. The second question investigated was whether the known inhibition by acetyl-CoA of binding of NADH, an allosteric inhibitor of E. coli citrate synthase, occurs heterotropically, as an indirect result of acetyl-CoA binding at the active site, or directly, by competition at the allosteric NADH binding site. Using existing restriction sites in the cloned E. coli citrate synthase gene, we prepared a deletion mutant which lacked 24 amino acids near what is predicted to the acetyl-CoA-binding portion of the active site. The mutant protein was inactive, and acetyl-CoA did not bind to the active site but still inhibited NADH binding. Thus acetyl-CoA can interact with both the allosteric and the active sites of this enzyme.  相似文献   

17.
Thirty-nine mutant tryptophan synthase alpha subunits have been purified and analyzed (in the presence of the beta 2-subunit) for their enzymatic (kcat, Km) behavior in the reactions catalyzed by the alpha 2.beta 2 complex, the fully constituted form of this enzyme. The mutant alpha subunits, obtained by in vitro random, saturation mutagenesis of the encoding trpA gene, contain single amino acid substitutions at sites within the first 121 residues of the alpha polypeptide. Four categories of altered residues have been tentatively assigned roles in the catalytic functions of this enzyme: 1) catalytic residues (Glu49 and Asp60); 2) residues involved in substrate binding or orientation (Phe22, Thr63, Gln65, Tyr102, and Leu105); 3) residues involved in alpha.beta subunit interactions (Gly51, Pro53, Asp56, Asp60, Pro62, Ala67, Phe72, Thr77, Pro78, Tyr102, Asn104, Leu105, and Asn108); and 4) residues with no apparent catalytic roles. Catalytic residue alterations result in no detectable activity in the alpha-subunit specific reactions. Substrate binding/orientation roles are detected enzymatically primarily as rate defects; alterations only at Tyr102 result in apparent Km effects. alpha.beta interaction roles are detected as rate defects in all tryptophan synthase reactions plus Km increases for the alpha-subunit substrate, indole-3-glycerol phosphate, only when L-serine is present at the beta 2-subunit active site. A substitution at only one site, Asn104, appears to be unique in its potential effect on intersubunit channeling of indole, the product of the alpha-subunit specific reaction, to the beta 2-subunit active site.  相似文献   

18.
The subunit structure of methionyl-tRNA synthetase from Escherichia coli   总被引:7,自引:0,他引:7  
G L Koch  C J Bruton 《FEBS letters》1974,40(1):180-182
  相似文献   

19.
Monoclonal antibodies directed against the native form of the beta 2 subunit of Escherichia coli tryptophan synthase strongly inhibit both its tryptophan synthase and its serine deaminase activities. The mechanism of this inactivation is studied here, by monitoring quantitatively the absorption and fluorescence properties of different well-characterized successive intermediates in the catalytic cycle of tryptophan synthase. It is shown that the antibodies interfere specifically with the formation of one or the other of these intermediates. It is concluded that the antibodies either modify or block the molecular flexibility of the protein, thus preventing conformational changes that the protein has to undergo during the catalysis. At least two different stages of the catalytic process, each one sensitive to a different class of antibodies, are shown to involve molecular movements of the polypeptide chain. Indications are given on the regions of the molecule involved in these movements.  相似文献   

20.
The fluorescence of tyrosine has been used to monitor a folding process of tryptophan synthase alpha-subunit from Escherichia coli, because this protein has 7 tyrosines, but not tryptophan. Here to assess the contribution of each Tyr to fluorescence properties of this protein during folding, mutant proteins in which Tyr was replaced with Phe were analyzed. The result shows that a change of Tyr fluorescence occurring during folding of this protein is contributed to approximately 40% each by Tyr(4) and Tyr(115), and to the remaining approximately 20% by Tyr(173) and Tyr(175). Y173F and Y175F mutant proteins showed an increase in their fluorescence intensity by approximately 40% and approximately 10%, respectively. These increases appear to be due to multiple effects of increased hydrophobicity, quenching effect of nearby residue Glu(49), and/or energy transfer between Tyrs. Two data for Y173F alpha-subunit of urea-induced unfolding equilibrium monitored by UV and fluorescence were different. This result, together with ANS binding and far UV CD, shows that folding intermediate(s) of Y173F alpha-subunit, contrary to that of wild-type, may contain self-inconsistent properties such as more buried hydrophobicity, highly quenched fluorescence, and different dependencies on urea of UV absorbance, suggesting an ensemble of heterogeneous structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号