首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of adenosylhomocysteinase (EC 3.3.1.1) and adenosine nucleosidase (EC 3.2.2.7) were assayed in extracts from yellow lupin (Lupinus luteus L.) cotyledons at different stages of seed formation and seedling development. Adenosylhomocysteinase activity was demonstrated in all the cotyledon extracts examined. Its lowest level was found in the dry seeds and the highest, in 4-day-old seedling cotyledons. Extracts from the cotyledons of maturating seeds, dry seeds, and seedlings up to the second day of growth exhibited no adenosine nucleosidase activity. Adenosine nucleosidase activity appeared in the cotyledons of 2-day-old seedlings and its highest level was reached in 4-to 5-day-old seedlings. There is no inhibitor of adenosine nucleosidase in the maturating and dry yellow lupin seeds. No activator of a possible zymogen form of adenosine nucleosidase from maturating or dry seeds occurs in the growing seedlings.  相似文献   

2.
A newly detected amide synthetase, designated 4-methyleneglutamine synthetase, has been partially purified from extracts of 5- to 7-day germinated peanut cotyledons (Arachis hypogaea). Purification steps include fractionation with protamine sulfate and ammonium sulfate followed by column chromatography on Bio-Gel and DEAE-cellulose; synthetase purified over 300-fold is obtained. The enzyme has a molecular weight estimated to be approximately 250,000 and a broad pH optimum with maximal activity at approximately pH 7.5. Maximal rates of activity are obtained with NH+4 (Km = 3.7 mM) as the amide donor and the enzyme is highly specific for 4-methylene-L-glutamic acid (Km = 2.7 mM) as the amide acceptor. Product identification and stoichiometric studies establish the reaction catalyzed to be: 4-methyleneglutamic acid + NH4+ + ATP Mg2+----4-methyleneglutamine + AMP + PPi. PPi accumulates only when F- is added to inhibit pyrophosphatase activity present in synthetase preparations. This enzymatic activity is completely insensitive to the glutamine synthetase inhibitors, tabtoxinine-beta-lactam and F-, and is only partially inhibited by methionine sulfoximine. It is, however, inhibited by added pyrophosphate in the presence of F- as well as by certain divalent metal ions (other than Mg2+) including Hg2+, Ni2+, Mn2+, and Ca2+. All data obtained indicate that this newly detected synthetase is distinct from the well-known glutamine and asparagine synthetases.  相似文献   

3.
Chemical modification of potato apyrase suggests that tryptophan residues are close to the nucleotide binding site. Kd values (+/- Ca2+) for the complexes of apyrase with the non-hydrolysable phosphonate adenine nucleotide analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(alpha,beta-methylene) diphosphate, were obtained from quenching of the intrinsic enzyme fluorescence. Other fluorescent nucleotide analogues (2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, 2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-diphosphate. 1,N6-ethenoadenosine triphosphate and 1,N6-ethenoadenosine diphosphate) were hydrolysed by apyrase in the presence of Ca2+, indicating binding to the active site. The dissociation constants for the binding of these analogues were calculated from both the decrease of the protein (tryptophan) fluorescence and enhancement of the nucleotide fluorescence. Using the sensitised acceptor (nucleotide analogue) fluorescence method, energy transfer was observed between enzyme tryptophans and ethene-derivatives. These results support the view that tryptophan residues are present in the nucleotide-binding region of the protein, appropriately oriented to allow the energy transfer process to occur.  相似文献   

4.
Chicken egg yolk contains an adenosine deaminase that was investigated after purifying about 500 times. It has a pH optimum at 6.5, aKm of 6.6 times 10(-5) mol/l and an approximate molecular weight of 14000; higher molecular forms could not be detected. It was compared with the adenosine deaminases of chicken liver and blood plasma. From this comparison it is evident that this protein has undergone certain changes during the successive events leading to its final structure (secretion by the liver, transport through blood plasma to the oocytes and development of the egg): a common subunit with an approximate molecular weight of 15000 may be the basis of the physiological diversifications. Substrate specificity of the purified extracts extends to cytidine and guanosine also, although certain observations point to different enzymes being involved. Deoxyadenosine is also deaminated. Cu2+, Zn2+, and Pb2+ are inhibiting and free -SH seems essential for activity.  相似文献   

5.
Abstract: Changes in the levels of inorganic pyrophosphatases (PPases) were monitored in germinating sesame seeds at regular intervals. Activities of acid and alkaline PPases increased markedly in cotyledons up to day 4, remained at the peak level up to day 7, and then showed a considerable decline thereafter. An alkaline PPase was isolated and purified from 5-day-old sesame cotyledons following acetone precipitation, ammonium sulfate fractionation, and chromatography on DEAE-Sephadex. Current protocol yielded about 20% recovery of total activity with a 6.4-fold purification. The enzyme was a monomer with a molecular mass of 20.8 kDa. Some of the properties of alkaline PPase including stability, substrate specificity, ion requirement, and amino acid composition were studied. Alkaline PPase showed maximum activity at pH 8.6 in the presence of Mg2+ and at 50 degrees C. However, the metal ion could not protect the enzyme against thermal denaturation. Alkaline PPase was highly specific for inorganic pyrophoaphate (PP) as substrate and the Km value was 0.7677 +/- 0.0528 mM. Full activation of the enzyme was achieved with a Mg2+/PPi ratio of 2. Divalent metal ions such as Ca2+, Cu2+, and Zn2+ inhibited PPase activity. Mg2+, partially relieved the inhibition caused by adenosine 5'-triphosphate. Studies related to the localization of alkaline PPase in microbodies revealed that the enzyme was distributed between glyoxysomes and mitochondria, with the former containing more of it.  相似文献   

6.
Adenosine kinase from human liver   总被引:5,自引:0,他引:5  
Adenosine kinase (ATP: adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to homogeneity from human liver. The yield was 55% of the initial activity with a final specific activity of 6.3 mumol/min per mg protein. The molecular weight was estimated as about 40 000 by Sephadex G-100 gel filtration and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 18% of that of adenosine. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad optimum at pH 7.5--8.5. The Km value for adenosine was 0.15 micrometer, and the activity was strongly inhibited at higher concentrations than 0.5 micrometer. ATP, dATP, GTP and dGTP were proved to be effective phosphate donors. Co2+ was more effective than Mg2+, and Ca2+, Mn2+, Fe2+ and Ni2+ showed about 50% of the activity for Mg2+. Some difference in structure between the adenosine kinase from human liver and that from rabbit or rat tissue, was observed by amino acid analysis and peptide mapping analysis.  相似文献   

7.
Beef brain cortex adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) activity is 84--88% inhibited by 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid in the absence of F- but only 50--60% inhibited by 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid in the presence of F-. In either case, further increase in EGTA concentration did not alter the degree of inhibition. The inhibition can be completely reversed in both cases by addition of 3 - 10(-5) M Ca2+, (yielding a [free Ca2+] of approximately 2 - 10(-6) M) and 5 - 10(-5) M Mn2+ or Co2+ and partially by 5 - 10(-5) M Sr2+ but not by addition of 5 - 10(-5) M Ba2+, Zn2+, Ni2+ or Fe2+. A [free Ca2+] of 7.2 - 10(-5) M markedly inhibited cyclase activity in the presence of F-. Solubilization by 1.8% Triton X-100 resulted in an enzyme preparation no longer stimulated by NaF and 100% inhibited by the addition of 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid either in the absence or presence of NaF. However, in contrast to ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-TETRAACETIC ACID, EDTA had no measurable effect on adenylate cyclase either in the presence or absence of NaF and ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid did not affect ATPase or phosphodiesterase activities. The data is rationalized by the postulation of two independent enzyme components in brain cortex: one component is about six-fold activated by NaF and the NaF effect is enhanced by low concentrations of Ca2+ and Mg2+. A second component is totally Ca2+ dependent and inhibited by high concentrations of F-. Mn2+, Co2+ and Sr2+ appear to be in vitro Ca2+ substitutes for both enzyme systems. On this basis, Triton X-100 treatment results in about a three-fold increase in specific activity of the Ca2+ dependent cyclase component but a complete abolition of the NaF stimulated component.  相似文献   

8.
Mechanosensitivity is hypothesized to participate in the regulation of ciliary beat frequency (CBF) in airway epithelia. To investigate this hypothesis, CBF in excised mouse trachea was monitored (microscopy image analysis) while varying mucosal shear (perfusate velocity and/or viscosity; planar flow). CBF increased within minutes of step increase to steady shear stress as small as 10(-3) Pa and decreased within minutes of shear reduction (相似文献   

9.
Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.  相似文献   

10.
Phospholipase A2 activity in sonicates and acid extracts of ejaculated, washed human sperm was measured using [1-14C] oleate-labeled autoclaved E. coli and 1-[1-14C] stearoyl-2-acyl-3-sn- glycerophosphorylethanolamine as substrates. Phospholipase A was optimally active at pH 7.5, was calcium-dependent, and exclusively catalyzed the release of fatty acid from the 2-position of phospholipids. The activity was membrane-associated, and was solubilized by extraction with 0.18 N H2SO4. Acid extracts of human sperm had the highest specific activity (1709 nmols /h per mg), followed by mouse, rabbit and bull, which were 105, 36 and 1.7 nmols /h per mg, respectively. para-bromophenacyl bromide inhibited human sperm phospholipase A2 activity, but mepacrine was without effect. In the presence of 1.0 mM added CaCl2, phospholipase A2 activity was inhibited by Zn2+ and Mn2+; whereas Cu2+, Cd2+, Mg2+, or Sr2+ had no effect. Zn2+ stimulated activity at low concentrations (10(-6) to 10(-8) M), and inhibited activity in a dose-dependent manner at concentrations of 10(-5) M. The extent of stimulation by low concentrations of Zn2+ was dependent on Ca2+ concentration; at 10(-7) M, Zn2+ activity was stimulated 160% with 0.5 mM CaCl2, and only 120% with 1.0 mM CaCl2. At low concentrations (10(-5) to 10(-7) M), methoxyverapamil (D600) and trifluoperazine stimulated human sperm phospholipase A2 activity, and trifluoperazine but not D600 produced almost complete inhibition between 10(-5) and 10(-4) M of the drug. The significance of human sperm phospholipase A2 activity and its modulation by Ca2+, Zn2+ and Mn2+ in the sperm acrosome reaction is discussed.  相似文献   

11.
ATP-sulfurylase (ATP:sulfate adenylyltransferase, EC 2.7.7.4), purified about 200-fold from sea urchin embryos, was free of ATPase and inorganic pyrophosphatase. The molecular weight of the enzyme was approx. 280 000 measured by gel filtration. The enzyme was activated by Mg2+, Ca2+ or Zn2+; EDTA and p-chloromercuriphenylsulfonate inhibited the enzyme activity. The inhibition was reversed by addition of Mg2+ and dithiothreitol, respectively. The enzyme activity increased continuously as the pH was raised from 5.6 to 10.6. The Km values for the enzyme were calculated to be 13 microM for adenosine 5'-phosphosulfate and 23 microM for pyrophosphate.  相似文献   

12.
A polynucleotide kinase, which catalyzes the phosphorylation of 5'-hydroxyl ends of deoxyribonucleic acid in the presence of adenosine triphosphate, has been purified 260-fold with a yield of 14% from 0.15 M NaCl extracts of rat liver nuclei. The purified enzyme has a pH optimum of 5.5. The enzyme is reversible inhibited by p-chloromercuribenzoate. The S0.5 value (ligand concentration required for a half-maximal activity) for ATP is 2.5 muM. A bivalent cation is essential for the reaction and S0.5 values for Mg2+, Ca2+ and Mn2+ are 3.3 mM, 4 mM and 0.05 mM respectively. Pyrophosphate remarkable inhibits the activity with I0.5 value (ligand concentration required for a half-maximal inhibition) of 0.2 mM, and sulfate, with I0.5 of 0.5 mM, whereas phosphate weakly inhibits the activity with I0.5 of about 20 mM. An apparent molecular weight of the purified enzyme is estimated to be 8 X 10(4) by gel filtration on a column of Sephadex G-150, and the Stokes radius of the enzyme molecule is shown to be about 0.36 nm. Sucrose density gradient centrifugation reveals that the enzyme has a sedimentation coefficient of about 4.4 S.  相似文献   

13.
The structure of both the mono- and the divalent metal nucleotide complexes active in the myosin subfragment 1 ATPase has been determined using the phosphorothioate analogs of ATP in the presence of various cations. Both the Sp and the Rp diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) were substrates in the presence of Mg2+, Ca2+, Mn2+, Co2+, Zn2+, and Cd2+ as well as with NH4+ and T1+. The Sp/Rp activity ratios obtained were largely independent of the cation. The simplest explanation of these results is that both mono- and divalent cations do not coordinate to the alpha-phosphate group. With adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), essentially only the Sp diastereomer was active with Mg2+ with Sp/Rp ratio of greater 3000. As the divalent metal ion was varied in the series given above, this ratio was progressively lowered to the value of 0.2 found with Cd2+. Similar changes in stereoselectivity were seen with monovalent cations. Thus, with NH4+, an Sp/Rp ratio of 8 was observed, whereas with T1+, this figure was reduced to 0.04. These data indicate that both mono- and divalent cations coordinate to the beta-phosphate group of the nucleoside triphosphate substrate. These results obtained with ATP alpha S and ATP beta S suggest that myosin uses the mono- or divalent cation delta, beta, gamma-bidentate nucleotide chelate as substrate.  相似文献   

14.
Properties of rat heart adenosine kinase.   总被引:3,自引:0,他引:3       下载免费PDF全文
Adenosine kinase was purified 870-fold from rat heart by a combination of gel filtration and affinity chromatography. The preparation was free of purine-metabolizing enzymes that could interfere in the assay of the kinase. A study of the properties of the purified enzyme showed that it is activated by Na+ and K+, it possesses a broad pH optimum between 6 and 8, MgATP is the nucleotide substrate, free Mg2+ is an inhibitor with respect to both MgATP and adenosine, and the enzyme is subject to substrate inhibition by adenosine. The severity of this inhibition increases as the concentration of free Mg2+ increase. The Km for MgATP was calculated to be 0.8 mM and that for adenosine, at likely physiological concentrations of MgATP and free MgCl2, was about 0.2 microM. In vivo the enzyme is likely to be saturated with both MgATP and adenosine. Indeed, the adenosine concentration in rat heart in vivo is probably sufficient to cause substrate inhibition, and this would be increased by an increase in free Mg2+ concentration. Changes in the concentrations of adenosine and free Mg2+ may play a role in modifying the activity of the enzyme in vivo.  相似文献   

15.
During germination and early growth of castor bean (Ricinus communis), all cellular constituents of the endosperm are eventually transferred to the growing embryo. The present results bear on the transport of breakdown products of nucleic acids. The total content of nucleic acids and nucleotides declines rapidly between day 4 and day 8 of seedling development. Concomitant with this decline, a secretion of adenosine, guanosine, and adenine from excised endosperms into the incubation medium takes place, accompanying a much more extensive release of sucrose and amino acids. Release of nucleotides could not be detected. The rates of release were linear for at least 5 hours for all compounds measured, indicating that they were liberated due to a coordinated metabolism. Uptake studies with cotyledons removed from the seedling showed that these have the ability to absorb all the substances released from the endosperm. Besides sucrose and amino acids, both nucleosides and free purine and pyrimidine bases were taken up by the cotyledons with high efficiency. AMP was also transported whereas ATP was not. Kinetic analyses were carried out to estimate the maximal uptake capacities of the cotyledons. Rates of uptake were linear for at least 1 to 2 hours and saturation kinetics were observed for all substances investigated. It is concluded that nucleosides can serve best as transport metabolites of nucleic acids, inasmuch as they are taken up by the cotyledons with the highest efficiency, the Vmax/Km ratios being considerably higher than those found for free purine and pyrimidine bases. For both adenosine and adenine transport, the Vmax was about 2 micromoles per hour per gram fresh weight, and the Km values were 0.12 and 0.37 millimolar, respectively. The rates of metabolite release from the endosperm and the capacity of the absorption system in the cotyledons are shown to account for the observed rates of disappearance of nucleic acids from the endosperm and efficient transport to the growing embryo.  相似文献   

16.
Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae contain similar levels of four enzymes of branched-chain amino acid biosynthesis: acetohydroxy acid synthase, acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B. Following growth at low partial pressures of H2-CO2, the levels of these enzymes in extracts of M. voltae are reduced three- to fivefold, which suggests that their synthesis is regulated. The enzymes from M. aeolicus were found to be similar to the eubacterial and eucaryotic enzymes with respect to molecular weights, pH optima, kinetic properties, and sensitivities to O2. The acetohydroxy acid isomeroreductase has a specific requirement for Mg2+, and other divalent cations were inhibitory. It was stimulated threefold by K+ and NH4+ ions and was able to utilize NADH as well as NADPH. The partially purified enzyme was not sensitive to O2. The dihydroxy acid dehydratase is extremely sensitive to O2, and it has a half-life under 5% O2 of 6 min at 25 degrees C. Divalent cations were required for activity, and Mg2+, Mn2+, Ni2+, Co2+, and Fe2+ were nearly equally effective. In conclusion, the archaebacterial enzymes are functionally homologous to the eubacterial and eucaryotic enzymes, which implies that this pathway is very ancient.  相似文献   

17.
A plasma membrane fraction was isolated from lysates of Bacillus Calmette-Guérin-induced alveolar macrophages of rabbit. On the basis of morphological and biochemical criteria this fraction appeared to be minimally contaminated by other subcellular organelles. Concentrations of Ca2+, but not of Mg2+, from 6.10(-8) to 1.10(-5) M markedly stimulated the basal ATPase (EC 3.6.1.3) activity of the plasma membrane, with an apparent Km (Ca2+) of 1.10(-6) M. The specific activity of the Ca2+-ATPase assayed at pCa = 5.5 was enriched about 8-fold in the plasma membrane fraction over the macrophage lysate. In contrast, the specific activity of the K+, EDTA-activated ATPase, associated to macrophage myosin, increased only 1.3-fold. Oligomycin and -SH group reagents exerted no influence on the Ca2+-ATPase activity, which was on the contrary inhibited by detergents such as Triton X-100 and deoxycholate. The activity of the Ca2+-ATPase was maximal at pH 7, and was decreased by 50 mM Na+ and 5 mM K+. On the contrary, the activity of Mg2+-ATPase, also present in the plasma membrane fraction, had a peak at about pH 7.8, and was stimulated by Na+ plus K+. On account of its properties, it is suggested that the Ca2+-ATPase is a component of the plasma membrane of the alveolar macrophage, and that its function may be that of participating in the maintenance of low free Ca2+ concentrations in the macrophage cytosol.  相似文献   

18.
A new adenosine nucleotide analog suitable for the Pyrosequencing method is presented. The new analog, 7-deaza-2'-deoxyadenosine-5'-triphosphate (c7dATP), has virtually the same low substrate specificity for luciferase as the currently used analog, 2'-deoxyadenosine-5'-O-(1-thiotriphosphate) (dATPalphaS). The inhibitory effect dATPalphaS displays on the nucleotide degrading activity of apyrase was reduced significantly by substituting the c7dATP for the dATPalphaS. Both analogs show high stability after long time storage at + 8 degrees C. Furthermore, with the new nucleotide a read length of up to 100 bases was obtained for several templates from fungi, bacteria and viruses.  相似文献   

19.
1. A method involving isoelectric precipitation and chromatography on SE-Sephadex (sulphoethyl-Sephadex) is described for the preparation of the troponin complex free of tropomyosin from low-ionic-strength extracts of natural actomyosin and myofibrils. 2. Purified troponin complex required tropomyosin to inhibit the Mg2+-stimulated adenosine triphosphatase activity and superprecipitation of desensitized actomyosin in the presence of ethanedioxybis(ethylamine)tetra-acetate. An upper limit of 35000 for the `molecular weight' of the troponin complex was derived from the amounts required to bring about 50% of the maximum inhibition of the Mg2+-stimulated adenosine triphosphatase activity of desensitized actomyosin of known concentration. 3. In the presence of dissociating reagents the troponin complex could be dissociated into inhibitory and Ca2+-sensitizing factors, which could be isolated separately on SE-Sephadex. The inhibitory factor inhibited the Mg2+-stimulated adenosine triphosphatase activity and superprecipitation of desensitized actomyosin independently of the concentration of free Ca2+ in the medium. 4. The Ca2+-sensitizing factor changed its electrophoretic mobility on polyacrylamide gel in the presence of ethanedioxybis(ethylamine)tetra-acetate. It formed a complex with the inhibitory factor at low ionic strength and the original biological activity of the troponin complex could be restored on mixing the inhibitory factor with the Ca2+-sensitizing factor in the ratio of about 3:2. 5. Evidence is presented indicating that the ability of tropomyosin preparations to restore relaxing-protein-system activity to the troponin complex and their inhibitory effect on the Ca2+-stimulated adenosine triphosphatase activity of desensitized actomyosin are two properties of different stability to preparative procedures and tryptic digestion. This suggests that the relaxing protein system of muscle may contain another as yet uncharacterized component.  相似文献   

20.
M T Mas  R F Colman 《Biochemistry》1984,23(8):1675-1683
The interaction of the 2'-phosphate-containing nucleotides (NADP+, NADPH, 2'-phosphoadenosine 5'-diphosphoribose, and adenosine 2',5'-bisphosphate) with NADP+ -specific isocitrate dehydrogenase was studied by using 31P NMR spectroscopy. The separate resonances corresponding to free and bound nucleotides, characteristic for slow exchange of nuclei on the NMR time scale, were observed in the spectra of the enzyme (obtained in the presence of excess ligand) with NADP+ and NADPH in the absence and presence of Mg2+ and with 2'-phosphoadenosine 5'-diphosphoribose in the absence of metal or in the presence of the substrate magnesium isocitrate. The position of the 31P resonance of the bound 2'-phosphate group in these spectra is invariant (delta = 6) in the pH range 5-8, indicating that the pK of this group is much lower in the complexes with the enzyme than that (pK = 6.13) in the free nucleotides. The additional downfield shift of this resonance by 1.8 ppm beyond that (delta = 4.22) of the dianionic form of the 2'-phosphate in free nucleotides suggests interaction with a positively charged group(s) and/or distortion of P-O-P angles as the result of binding to the enzyme. A single resonance of 2'-phosphate was observed in the spectrum of the enzyme complex with 2'-phosphoadenosine 5'-diphosphoribose in the presence of Mg2+, with the chemical shift dependent on the nucleotide to enzyme ratio, characteristic for the fast exchange situation. Addition of metal does not perturb the environment of the 2'-phosphate in the complexes of NADP+ and NADPH with isocitrate dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号