首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
以次生代谢物质萜烯类、黄酮类以及单宁等为基础的自身化学抗虫性一直是植物化学防御的核心.随着基因重组技术的发展,许多作物获得了一种新的化学防御形式,即以表达外源基因产物来进行防御.外源抗虫蛋白与内源抗虫物质的协调性问题,在利用外源基因工程改良植物抗虫性时是非常重要的,同时也是转基因作物安全性和生态学评价的重要方面.转基因植物中外源与内源抗虫系统间的协调性的研究取得了一些成果,但尚未引起人们足够的重视.综述了离体条件下和在转基因植物体内,外源抗虫蛋白Bt和GNA等与植物次生代谢物质以及各抗虫蛋白之间交互作用的研究进展,并探讨了研究各抗虫因子交互作用的意义.  相似文献   

3.
植物对昆虫的化学防御   总被引:32,自引:0,他引:32  
康乐 《植物学通报》1995,12(4):22-27
植物对昆虫的化学防御康乐(中国科学院动物研究所,北京100080)THECHEMICALDEFENSESOFFPLANTSTOPHYTOPHAGOUSINSECTSKangLe(InslitrteofZoology,AcademiaSinicaBei...  相似文献   

4.
以次生代谢物质萜烯类、黄酮类以及单宁等为基础的自身化学抗虫性一直是植物化学防御的核心。随着基因重组技术的发展,许多作物获得了一种新的化学防御形式,即以表达外源基因产物来进行防御。外源抗虫蛋白与内源抗虫物质的协调性问题,在利用外源基因工程改良植物抗虫性时是非常重要的,同时也是转基因作物安全性和生态学评价的重要方面。转基因植物中外源与内源抗虫系统间的协调性的研究取得了一些成果,但尚未引起人们足够的重视。综述了离体条件下和在转基因植物体内,外源抗虫蛋白Bt和GNA等与植物次生代谢物质以及各抗虫蛋白之间交互作用的研究进展,并探讨了研究各抗虫因子交互作用的意义。  相似文献   

5.
植物在长期进化过程中形成了多样的防御策略以应对食草动物的采食,其中基于植物次生代谢产物的化学防御策略在植物-食草动物种间互作中起到了关键的调控作用。植物次生代谢产物的合成以减少资源向生长和繁殖的分配为代价,是植物应对食草动物采食的一种权衡策略。国内外针对植物次生代谢产物如何影响食草动物的采食行为、植物个体生长和适合度等已开展了较多研究,但对其化学防御策略还缺乏系统的综述。该文梳理了植物次生代谢产物合成与释放的影响因素、植物应对食草动物采食的化学防御策略及形成机制。植物个体组织器官、种群和群落特征、食草动物种类及采食强度、土壤资源有效性、生长季节和环境胁迫均会对植物次生代谢产物的合成与释放产生影响。植物通过增强化学防御的可塑性、调节光合产物分配格局和资源在生长-繁殖-防御功能间的权衡关系来应对食草动物的采食。针对植物化学防御策略的形成机制,当前主要的假说/理论包括生长分化平衡假说、植物可见性假说、最优防御理论、碳养分平衡假说、生长速率假说、植物防御综合征假说和错误管理理论等。随着人类活动(如放牧)的增加和气候变化的加剧,未来应从多学科交叉视角,加强植物应对大型食草动物采食、环境胁迫和全球变化背景下植物防御策略的研究,以更深入地理解植物应对食草动物的防御过程及机制。  相似文献   

6.
7.
 植物和昆虫在长期的相互作用过程中形成了复杂的防御体系。近年来, 人们发现植物在受到外界伤害后, 它们邻近的健康植物能够感受到威胁来临, 并积极表达抗性基因和产生防御物质。这种现象被称为“植物-植物相互交流”。一系列的相关研究表明: 绿叶挥发物和萜烯类物质是受伤害植物对邻近健康植物发送的主要信号, 邻近的健康植物在接收到这些挥发性有机化合物信号后, 直接防御和间接防御能力都能够迅速提升。人们猜测植物挥发性有机化合物“启动”了邻近健康植物的多种防御反应, 使它们在面临真正威胁时迅速做出防御反应。然而, 植物-植物交流的分子机制至今尚不清楚。我们运用拟南芥(Arabidopsis thaliana)全基因组芯片技术和突变体材料, 对植物-植物交流的分子机理进行了探讨。结果发现: 有效的挥发性有机化合物并不限于绿叶挥发物和萜烯类物质, 且挥发性有机化合物的种类和节律能够相互配合, 从而达到最佳效果; 邻近健康植物的乙烯信号途径在植物-植物交流过程中是不可或缺的, 茉莉酸信号起到了辅助和信号放大的作用。  相似文献   

8.
植物对病害的防御系统   总被引:7,自引:0,他引:7  
植物表现出对病害的抗性。这一点已早为育种家所利用,培育出许多抗病的作物品种。在研究植物和病原相互关系的过程中,人们发现植物中存在一种为病原所诱导的抗病机制。即在病原侵染的诱发下,植物产生一系列拮抗的物质,以阻止病害的传播和病原微生物的进  相似文献   

9.
植物蛋白酶抑制剂在植物抗虫与抗病中的作用   总被引:13,自引:0,他引:13       下载免费PDF全文
综述了植物蛋白酶抑制剂抗虫与抗病作用的研究进展.蛋白酶抑制剂广泛存在于植物体内,与植物抗虫抗病密切相关.植物蛋白酶抑制剂能抑制昆虫肠道蛋白酶,使昆虫生长发育缓慢,甚至死亡.但取食蛋白酶抑制剂后,昆虫能迅速分泌对抑制剂不敏感的蛋白酶,而使蛋白酶抑制剂无效.食物蛋白的含量和质量也影响植物蛋白酶抑制剂的抗虫效果.病原菌的感染能诱导植物产生蛋白酶抑制剂,诱导产生的蛋白酶抑制剂能抑制病原菌的生长.  相似文献   

10.
植物蛋白酶抑制剂及其在抗虫植物基因工程中的应用   总被引:7,自引:0,他引:7  
植物蛋白酶抑制剂(proteinase inhibitors,PI)能与昆虫蛋白酶的活性部位或变构部位结合,抑制酶的催化活性,导致昆虫发育不正常甚至死亡。蛋白酶抑制剂基因是抗虫基因工程中一类重要的目的基因,具有作用位点独特,抗虫谱广等独持优点。本文从蛋白酶抑制剂的分类,作用机制,转基因研究及其应用前景等方面进行了综述。  相似文献   

11.
Inducible direct plant defense against insect herbivores: A review   总被引:7,自引:0,他引:7  
Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. Overall categories of direct plant defenses against insect herbivores include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. Multiple factors with additive or even synergistic impact are usually involved in defense against a specific insect species, and factors of major importance to one insect species may only be of secondary importance or not effective at all against another insect species. Extensive qualitative and quantitative high throughput analyses of temporal and spatial variations in gene expression, protein level and activity, and metabolite concentration will accelerate not only the understanding of the overall mechanisms of direct defense, but also accelerate the identification of specific targets for enhancement of plant resistance for agriculture.  相似文献   

12.
Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.  相似文献   

13.
Plants can accumulate, constitutively and/or after induction, a wide variety of defense compounds in their tissues that confer resistance to herbivorous insects. The naturally occurring plant resistance gene pool can serve as an arsenal in pest management via transgenic approaches. As insect‐plant interaction research rapidly advances, it has gradually become clear that the effects of plant defense compounds are determined not only by their toxicity toward target sites, but also by how insects respond to the challenge. Insect digestive tracts are not passive targets of plant defense, but often can adapt to dietary challenge and successfully deal with various plant toxins and anti‐metabolites. This adaptive response has posed an obstacle to biotechnology‐based pest control approaches, which underscores the importance of understanding insect adaptive mechanisms. Molecular studies on the impact of protease inhibitors on insect digestion have contributed significantly to our understanding of insect adaptation to plant defense. This review will focus on exposing how the insect responds to protease inhibitors by both qualitative and quantitative remodeling of their digestive proteases using the cowpea bruchid–soybean cysteine protease inhibitor N system.  相似文献   

14.
15.
Many plant species have evolved defense traits against herbivores. Associational effects (AEs) refer to a kind of apparent interaction where the herbivory risk to a focal plant species depends on the composition of other plant species in a neighborhood. Despite ample evidence for AEs between different plant species, this point of view has rarely been applied to polymorphism in defense traits within a plant species. The purpose of this review is to highlight an overlooked role of conspecific AEs in maintaining polymorphism in antiherbivore defense. First, I present a general review of AE between plant species and its role in the coexistence of plant species. This viewpoint of AE can be applied to genetic polymorphism within a plant species, as it causes frequency‐ and density‐dependent herbivory between multiple plant types. Second, I introduce a case study of conspecific AEs in the trichome‐producing (hairy) and glabrous plants of Arabidopsis halleri subsp. gemmifera. Laboratory and semi‐field experiments illustrated that AEs against the brassica leaf beetle Phaedon brassicae mediate a minority advantage in defense and fitness between hairy and glabrous plants. Combined with a statistical modeling approach, field observation revealed that conspecific AEs can maintain the trichome dimorphism via negative frequency‐dependent selection in a plant population. Finally, I discuss spatial and temporal scales at which AEs contribute to shaping genetic variation in antiherbivore defense in a plant metapopulation. Based on the review and evidence, I suggest that AEs play a key role in the maintenance of genetic variation within a plant species.  相似文献   

16.
Huang T  Jander G  de Vos M 《Phytochemistry》2011,72(13):1531-1537
Chemical defense against herbivores is of utmost importance for plants. Primary and secondary metabolites, including non-protein amino acids, have been implicated in plant defense against insect pests. High levels of non-protein amino acids have been identified in certain plant families, including legumes and grasses, where they have been associated with resistance to insect herbivory. Non-protein amino acids can have direct toxic effects via several mechanisms, including misincorporation into proteins, obstruction of primary metabolism, and mimicking and interfering with insect neurological processes. Additionally, certain non-protein amino acids allow nitrogen to be stored in a form that is metabolically inaccessible to herbivores and, in some cases, may act as signals for further plant defense responses. Specialized insect herbivores often possess specific mechanisms to avoid or detoxify non-protein amino acids from their host plants. Although hundreds of non-protein amino acids have been found in nature, biosynthetic pathways and defensive functions have been elucidated in only a few cases. Next-generation sequencing technologies and the development of additional plant and insect model species will facilitate further research on the production of non-protein amino acids, a widespread but relatively uninvestigated plant defense mechanism.  相似文献   

17.
Lincoln  D. E. 《Plant Ecology》1993,(1):273-280
The carbon/nutrient ratio of plants has been hypothesized to be a significant regulator of plant susceptibility of leaf-eating insects. As rising atmospheric carbon dioxide stimulates photosynthesis, host plant carbon supply is increased and the accompanying higher levels of carbohydrates, especially starch, apparently dilute the protein content of the leaf. When host plant nitrogen supply is limited, plant responses include increased carbohydrate accumulation, reduced leaf protein content, but also increased carbon-based defensive chemicals. No change, however, has been observed in the concentration of leaf defensive allelochemicals with elevated carbon dioxide during host plant growth. Insect responses to carbon-fertilized leaves include increased consumption with little change in growth, or alternatively, little change in consumption with decreased growth, as well as enhanced leaf digestibility, reduced nitrogen use efficiency, and reduced fecundity. The effects of plant carbon and nutrient supply on herbivores appear to result, at least in part, from independent processes affecting secondary metabolism.  相似文献   

18.
* Plant defense traits often show high levels of genetic variation, despite clear impacts on plant fitness. This variation may be partly maintained by trade-offs in the defense against multiple herbivore species, for example between generalists and coevolved specialists. Despite a long-standing discussion in the literature on the subject, no study to date has specifically manipulated specialist and generalist herbivores independently of one another to determine whether the two guilds exert opposing selection pressures on specific defensive traits. * In two separate experiments, the dominant specialist and generalist herbivores of Brassica nigra were independently manipulated to test whether the composition of the herbivore community altered the direction of selection on a major defensive trait of the plant, sinigrin concentration. * It was found that generalist damage was negatively correlated but specialist loads were positively correlated with increasing sinigrin concentrations; and sinigrin concentration was favored when specialists were removed, disfavored (past an intermediate point) when generalists were removed and selectively neutral when plants faced both generalists and specialists.  相似文献   

19.
植物对植食性哺乳动物的化学防卫   总被引:2,自引:1,他引:2  
综述植物次生合物防卫植食性哺乳动物食的研究进展,植物组织的次生化合物主要为酚类、萜类及含N类化合物,植物对动物觅食的化学防卫对策以次生化合物的各类而有差异,次生化合物通过对动物的食物摄入、消化、代谢,以及敏殖活动的效应,以抵御动物的觅食。将植物化学防卫与动物适应对策相结合,探讨动物-植物协同进化模式,是该研究领域的主要发展趋势。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号