首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syntheses and reactions of two epoxyketoacids (methyl (Z)-9,10-epoxy-13-oxo-(E)-11-octadecenoate (IV) and methyl (E)-9,10-epoxy-13-oxo-(E)-11-octadecenoate (V)) are described. The synthetic method is based on the stereoselective oxidation of linoleic acid by soybean lipoxygenase to produce the corresponding 13-hydroperoxide. Reduction of the hydroperoxide with sodium borohydride followed by oxidation, esterification and epoxidation yielded the compounds IV and V with a global yield of 14% and 3%, respectively, referred to the diasteromerically pure isolated compounds. Confirmation of the structures was carried out by reduction of the ketone group with sodium borohydride and by the opening of the oxirane ring with methanolic boron trifluoride. The reduction of compounds IV and V with hydrogen mainly yielded the tetrahydrofuranoid fatty acid, methyl 10,13-epoxyoctadecanoate. This reaction may be considered a new procedure to obtain tetrahydrofuranoid fatty acids.  相似文献   

2.
Singlet oxygen production by soybean lipoxygenase isozymes   总被引:10,自引:0,他引:10  
The oxidation of linoleic acid catalyzed by soybean lipoxygenase isozymes was accompanied by 1268 nm chemiluminescence characteristic of singlet oxygen. The recombination of peroxy radicals as first proposed by Russell (Russell, G.A. (1957) J. Am. Chem. Soc. 79, 3871-3877) is a plausible mechanism for the observed singlet oxygen production. Lipoxygenase-3 was the most active isozyme. Under the optimal aerobic conditions of p2H 7, 100 micrograms/ml lipoxygenase-3, 100 microM linoleic acid, 100 microM 13-hydroperoxylinoleic acid, and air-saturated buffer, the yield of singlet oxygen was 12 +/- 0.4 microM or 12% of the amount predicted by the Russell mechanism. High yields of singlet oxygen required the presence of 13-hydroperoxylinoleic acid. Systems containing lipoxygenase-2 and lipoxygenase-3 produced comparable yields of singlet oxygen without added 13-hydroperoxylinoleic acid, since the lipoxygenase-2 served as an in situ source of hydroperoxide. Lipoxygenase-1 was active only at low oxygen concentrations. Its singlet oxygen-producing capacity was greatly increased by the addition of acetone to the system. Lipoxygenase-2 did not produce detectable quantities of singlet oxygen.  相似文献   

3.
The interaction of furan fatty acids (F-acids) with lipoxygenase was investigated by incubation experiments of a synthetic dialkyl-substituted F-acid with soybean lipoxygenase-1. Originally the oxidation of furan fatty acids was assumed to be directly effected by lipoxygenase. It is now demonstrated that this reaction is a two-step process that requires the presence of lipoxygenase substrates, e.g. linoleic acid. In the first step linoleic acid is converted by the enzyme to the corresponding hydroperoxide. This attacks, probably in a radical reaction, the furan fatty acid to produce a dioxoene compound that can be detected unequivocally by gas chromatography-mass spectrometry.  相似文献   

4.
Methyl 2,5-disubstituted C18 furanoid fatty ester (viz. methyl 9,12-epoxyoctadeca-9,11-dienoate) was readily converted to methyl 9,12-dioxostearate using mineral or maleic acid. Conversion of the naturally occurring 2,3,5-trisubstituted furanoid fatty ester (viz. methyl 10,13-epoxy-11-methyloctadeca-10,12-dienoate) to the corresponding methyl 10,13-dioxo-11-methylstearate was much slower in rate under similar reaction conditions. The case of separating the dioxo derivatives from a mixture of other common fatty esters was demonstrated and the cyclodehydration of the isolated dioxo derivatives to the parent furanoid ester was rapidly achieved using dilute BF3-methanol complex.  相似文献   

5.
Application of linoleic and linolenic acids to Phalaenopsis and Dendrobium flowers enhanced their senescence and promoted ethylene production. This effect was specific to unsaturated fatty acids which serve as substrates for lipoxygenase action, and did not occur following similar treatments with saturated fatty acids. Several major lipoxygenase pathway metabolites including jasmonic acid methyl ester, traumatic acid, trans -2-hexenal and cis -3-hexenol also enhanced flower senescence. Jasmonic acid methyl ester promoted ethylene production by Phalaenopsis flowers. In contrast, treating flowers with the lipoxygenase inhibitors salicylhydroxamic acid and n -propyl gallate. which inhibite(d) lipoxygenase activity in vitro, had no effect on pollination-induced senescence of the flowers. Furthermore, during the 50-h period following pollination, there was no increase in lipoxygenase activity in Phalaenopsis flowers. During the 10-h period from pollination of Dendrobium flowers until the initiation of ethylene production, there was no effect of pollination on jasmonate levels in either the perianth or the columns. These results suggest that lipoxygenase activity and jasmonates are not directly involved in pollination-induced Phalaenopsis and Dendrobium flower senescence.  相似文献   

6.
The soybean lipoxygenase I oxygenates the unusual substrate 12-keto-(9Z)-octadecenoic acid methyl ester as indicated by oxygen uptake and spectral changes of the incubation mixture. The main oxygenation products have been isolated by HPLC and identified as 9,12-diketo-(10E)-octadecenoic acid methyl ester and 12-keto-(10E)-dodecenoic acid methyl ester by UV and IR spectroscopy, cochromatography with an authentic standard, gas chromatography/mass spectroscopy, and 1H NMR. In the formation of both compounds the oxygenase and hydroperoxidase activities of the enzyme appear to be involved. These data and the earlier results on the oxygenation of furanoic fatty acids (Boyer et al., 1979) indicate that the lipoxygenase reaction is not restricted to substrates containing a 1,4-pentadiene structure.  相似文献   

7.
8.
Molecular dimensions and molecular orbital calculations of the electronic structures of 56 substrates, inhibitors and inducers of the cytochromes P-448 and other families of the cytochromes P-450 are reported. Substrates of the cytochromes P-448 are shown to be planar molecules with relatively large values of area/depth2, and to have electronic structures with relatively low values for ΔE, the difference in energy between the frontier orbitals (E(LEMO) − E(HOMO)). Substrates of other families of the cytochromes P-450 are globular molecules, with relatively low values of area/depth2 and relatively high values of ΔE. Molecular orbital calculations of the active oxygen species, singlet oxygen and superoxy anion, have also been made. Singlet oxygen is a poor electron donor (low values of E(HOMO)) but a good electron acceptor (low values of E(LEMO)), whereas superoxy anion is a good electron donor and a poor electron acceptor. Cytochrome P-448 substrates, which are good electron donors, would preferentially accept singlet oxygen, a good electron acceptor; substrates of the other families of cytochrome P-450, which are less effective electron donors, would preferentially accept superoxy anion, a good electron donor, although substrates of both cytochromes P-448 and other P-450s may accept both species of active oxygen. Together with recent published evidence, these data provide a greater understanding of the mode of activation of oxygen by the various families of the cytochromes P-450, and to the insertion of active oxygen into the substrates. Mechanisms are proposed for the oxygenation of substrates, namely, epoxidation involving singlet oxygen and hydroxylation by superoxy anion. Finally, a detailed explanation of the cytochrome P-450 cycle is discussed, and mechanisms of the different types of oxidative metabolism are presented.  相似文献   

9.
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion.  相似文献   

10.
Rat liver microsomal suspension (1 mg protein per ml) was incubated at 37 degrees C with 5 mM salicylic acid and 0.2 mM NADPH. The amounts of thiobarbituric acid reactive substances (TBARS) and 2,5-dihydroxybenzoic acid (2,5-DHB), an oxidative metabolite of salicylic acid increased with the incubation time. Simultaneously spontaneous chemiluminescence (CL) was found to be generated there. The addition of SKF-525A, an inhibitor of cytochrome P450 (P450), to the reaction mixture inhibited the CL generation together with the inhibition of the oxidative metabolism. The anti-oxidants and singlet oxygen scavengers like N,N-diphenylphenylenediamine (DPPD) and histidine suppressed the CL generation. The addition of 1,4-diazabicyclo [2.2.2] octane (DABCO), a singlet oxygen quencher, to the reaction mixture generating CL enhanced CL transiently and then CL decreased markedly. Thus CL observed here may possibly originate from the singlet oxygen. The CL generation was suggested to be closely related with salicylic acid-induced lipid peroxidation, and to be coupled with the oxidative metabolism mediated by P450 in rat liver microsomes.  相似文献   

11.
The pure reticulocyte lipoxygenase converts 15LS-hydroxy-5,8,11,13(Z,Z,Z,E)-icosatetraenoic acid (15LS-HETE) methyl ester to a complex mixture of products containing 5DS,14LR,15LS-trihydro(pero)xy-6E,++ +8Z,10E,12E-icosatetraenoate methyl ester (lipoxin B methyl ester), 5DS,15LS-DiH(P)ETE methyl ester and four 8,15LS-DiH(P)ETE methyl ester isomers [DiH(P)ETE = dihydro(pero)xy-icosatetraenoic acid]. After a short incubation period (15 min) 5DS,15LS-DiH(P)ETE methyl ester was found to be the main product, whereas after a 3-h incubation lipoxin B methyl ester was the predominant product. The reaction shows a remarkable stereoselectivity since only small amounts of other trihydroxy tetraenes are formed. Anaerobiosis, heat inactivation of the enzyme, or incubation in the presence of lipoxygenase inhibitors (icosatetraynoic acid, nordihydroguaiaretic acid) completely abolished the reaction. The complete steric structure of the major tetraene product (lipoxin B methyl ester) was established by ultraviolet spectroscopy, HPLC on four different types of columns, gas chromatography/mass spectrometry, gas/liquid chromatography of the ozonolysis fragments of the menthoxycarbonyl derivatives, and by 400-MHz 1H-NMR. Atmospheric oxygen was incorporated at carbon-5 and carbon-14 into the major product. 5DS,15LS-DiH(P)ETE methyl ester was shown to be an intermediate in the synthesis. Lipoxin B was also formed during the oxygenation of arachidonic acid, 15LS-HETE and 5DS,15LS-DiHETE. The results presented here indicate that lipoxin B can be formed by pure lipoxygenases via a sequential oxygenation of arachidonic acid or its hydro(pero)xy derivatives.  相似文献   

12.
Soybean lipoxygenase-1 is inactivated by micromolar concentrations of the following hydrophobic thiols: 1-octanethiol, 12(S)-mercapto-9(Z)-octadecenoic acid (S-12-HSODE), 12(R)-mercapto-9(Z)-octadecenoic acid (R-12-HSODE), and 12-mercaptooctadecanoic acid (12-HSODA). In each case, inactivation is time-dependent and not reversed by dilution or dialysis. Inactivation requires 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13-HPOD), which suggests that it is specific for the ferric form of the enzyme. Lipoxygenase catalyzes an oxygenation reaction on each of the aforementioned thiols, as judged by the consumption of O(2). These reactions also require 13-HPOD. 1-Octanethiol is converted to 1-octanesulfonic acid, which was identified by GC/MS of its methyl ester. The rates of oxygen uptake for R- and S-12-HODE are about 5- and 2.5-fold higher than the rate with 1-octanethiol. The stoichiometries of inactivation imply that inactivation occurs on approximately 1 in 18 turnovers for 12-HSODA, 1 in 48 turnovers for 1-octanethiol, 1 in 63 turnovers for S-12-HSODE, and 1 in 240 turnovers for R-12-HSODE. These data imply that close resemblance to lipoxygenase substrates is not a crucial requirement for either oxidation or inactivation. Under the conditions of our experiments, inactivation was not observed with several more polar thiols: mercaptoethanol, dithiothreitol, L-cysteine, glutathione, N-acetylcysteamine, and captopril. The results imply that hydrophobic thiols irreversibly inactivate soybean lipoxygenase by a mechanism that involves oxidation at sulfur.  相似文献   

13.
The extract of bark of Angylocalyx pynaertii (Leguminosae) was found to potently inhibit mammalian alpha-L-fucosidases. A thorough examination of the extract resulted in the discovery of 15 polyhydroxylated alkaloids, including the known alkaloids from seeds of this plant, 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), 1-deoxymannojirimycin (DMJ) and 2,5-imino-1,2,5-trideoxy-D-mannitol (6-deoxy-DMDP). Among them, eight sugar-mimic alkaloids showed the potent inhibitory activity towards bovine epididymis alpha-L-fucosidase and their Ki values are as follows: 6-deoxy-DMDP (83 microM), 2,5-imino-1,2,5-trideoxy-L-glucitol (0.49 microM), 2,5-dideoxy-2,5-imino-D-fucitol (17 microM), 2,5-imino-1,2,5-trideoxy-D-altritol (3.7 microM), DMJ (4.7 microM), N-methyl-DMJ (30 microM), 6-O-alpha-L-rhamnopyranosyl-DMJ (Rha-DMJ, 0.06 microM), and beta-L-homofuconojirimycin (beta-HFJ, 0.0053 microM). We definitively deduced the structural requirements of inhibitors of alpha-L-fucosidase for the piperidine alkaloids (DMJ derivatives). The minimum structural feature of alpha-L-fucosidase inhibitors is the correct configuration of the three hydroxyl groups on the piperidine ring corresponding to C2, C3 and C4 of L-fucose. Furthermore, the addition of a methyl group in the correct configuration to the ring carbon atom corresponding to C5 of L-fucose generates extremely powerful inhibition of alpha-L-fucosidase. The replacement of the methyl group of beta-HFJ by a hydroxymethyl group reduced its inhibitory potential about 80-fold. This suggests that there may be a hydrophobic region in or around the active site. The existence or configuration of a substituent group on the ring carbon atom corresponding to the anomeric position of L-fucose does not appear to be important for the inhibition. Interestingly, Rha-DMJ was a 70-fold more potent inhibitor of alpha-L-fucosidase than DMJ. This implies that the lysosomal alpha-L-fucosidase may have subsites recognizing oligosaccharyl structures in natural substrates.  相似文献   

14.
The singlet oxygen reaction product of various trapping agents is observed during enzymic and nonenzymic peroxidation of microsomes as well as during the peroxidation of pure lipids extracted from microsomes. We now wish to report that purified fatty acid hydroperoxide alone, as well as peroxidized microsomal lipid and cumene hydroperoxide also form the singlet oxygen reaction product with 2,5-diphenylfuran. The reaction product (cis-1,2-dibenzoylethylene) was observed to be formed in an anaerobic system, with or without EDTA. The data indicate that a reaction of hydroxyl radicals with 2,5-diphenylfuran cannot account for the formation of dibenzoylethylene in these systems. These results are consistent with a hypothesis that the singlet oxygen-like factor was formed from the lipid peroxides per se and, in addition, supports the possibility that either the peroxides can react directly with diphenylfuran to produce dibenzoylethylene or that the self-reaction of organic peroxides may form an intermediate product which can react directly with singlet oxygen-trapping agents to produce substances which are identical to a reaction of the trapping agents with singlets oxygen.  相似文献   

15.
Recent studies showed that soybean lipoxygenase inhibitors like phenidone and nordihydroguaiaretic acid (NDGA) reduce the catalytically active ferric lipoxygenase to its inactive ferrous form. Addition of 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13-HPOD) regenerated the active ferric form. In this paper, it is shown that in such a system the inhibitors are oxidized to free-radical metabolites. Incubation of soybean lipoxygenase and linoleic acid with p-aminophenol, catechol, hydroquinone, NDGA, or phenidone resulted in the formation of the one-electron oxidation products of these compounds. Free-radical formation depended upon the presence of the lipoxygenase and 13-HPOD. The free radicals were detected by ESR spectroscopy, and their structure was confirmed by analysis of the spectra, using a computer correlation technique. These data support the proposed mechanism for the inhibition of lipoxygenase by phenolic antioxidants.  相似文献   

16.
Evidence for singlet oxygen formation has been obtained for the lactoperoxidase, H2O2 and bromide system by monitoring 2,3-diphenylfuran and diphenylisobenzofuran oxidation, O2 evolution, and chemiluminescence. This could provide an explanation for the cytotoxic and microbicidal activity of peroxidases and polymorphonuclear leukocytes. Evidence for singlet oxygen formation included the following. (a) Chemiluminescence accompanying the enzymic reaction was doubled in a deuterated buffer and inhibited by singlet oxygen traps. (b) The singlet oxygen traps, diphenylfuran and diphenylisobenzofuran, were oxidized to their known singlet oxygen oxidation products in the presence of lactoperoxidase, hydrogen peroxide and bromide. (c) The rate of oxidation of diphenylfuran and diphenylisobenzofuran was inhibited when monitored in the presence of known singlet oxygen traps or quenchers. (d) Oxygen evolution from the enzymic reaction was inhibited by singlet oxygen traps but not by singlet oxygen quenchers. (e) The traps or quenchers which were effective inhibitors in the experiments above did not inhibit peroxidase activity, were not competitive peroxidase substrates and did not react with the hypobromite intermediate since they did not inhibit hydrogen peroxide consumption by the enzyme. Using these criteria, various biological molecules were tested for their reactivity with singlet oxygen. Furthermore, by studying their effect on oxygen release by the enzymic reaction, it could be ascertained whether they were acting as singlet oxygen traps or quenchers.  相似文献   

17.
(5Z,8Z,11Z,13E)-15-Hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) is not well oxygenated by arachidonate 15-lipoxygenases because of two structural reasons: (i) it contains a hydrophilic OH-group in close proximity to its methyl end and (ii) it lacks the bisallylic methylene at C(13). We synthesized racemic (5Z,8Z,11Z,14Z)-16-hydroxy-5,8,11,14-eicosatetraenoic acid (16-HETE) which still contains the bisallylic C(13), separated the enantiomers reaching an optical purity of >99% and tested them as substrates for 5- and 15-lipoxygenases. Our synthetic pathway, which is based on stereospecific hydrogenation of a polyacetylenic precursor, yielded substantial amounts (30%) of 14,15-dehydro-16-HETE in addition to 16-HETE. When 16-HETE was tested as lipoxygenase substrate, we found that it is well oxygenated by the soybean 15-lipoxygenase and by the recombinant human 5-lipoxygenase. Analysis of the reaction products suggested an arachidonic acid-like alignment at the active site of the two enzymes. In contrast, the product pattern of 16-HETE methyl ester oxygenation by the soybean lipoxygenase (5-lipoxygenation) may be explained by an inverse head to tail substrate orientation.  相似文献   

18.
One proposed mechanism of the inactivation of lipoxygenase by inhibitors is the reduction of the catalytically active ferric form of the enzyme to its ferrous form. Recent studies have shown that compounds containing the hydroxamate moiety are potent inhibitors of lipoxygenase. The hydroxamate portion of the inhibitor is thought to bind to iron at the catalytic site of the enzyme. We now report evidence that the NOH of the hydroxamate group of N-(4-chlorophenyl)-N-hydroxy-N'-(3-chlorophenyl)urea, N-[(E)-3-(3-phenoxyphenyl)prop-2-enyl]acetohydroxamic acid (BW A4C), and N-(1-benzo(b)thien-2-ylethyl)-N-hydroxyurea (Zileuton) is oxidized by lipoxygenase to form their corresponding nitroxides, which are directly detected by electron paramagnetic resonance spectroscopy. It is consistently found that the selected NOH-containing compounds, e.g. alkylhydroxylamines or N-hydroxyureas, are also oxidized by lipoxygenase to form their corresponding nitroxides.  相似文献   

19.
The oxygen-dependent photooxidation of NADPH in the presence of hematoporphyrin in D2O results in the production of enzymatically active NADP+. The reaction is not inhibited by benzoate, mannitol, superoxide dismutase, or catalase. Moreover, addition of either potassium superoxide or H2O2 does not potentiate the reaction. This suggests OH-, H2O2, and O-2 are not likely to be the reactive oxygen species in this system. The oxidation is inhibited by various singlet oxygen quenchers and inhibitors such as 1,4-diazabicyclo[2.2.2]octane, 2,5-dimethylfuran plus methanol, histidine, and methionine. In addition, the rate of oxidation in H2O is less than one-fifth of that in D2O. The results suggest a singlet oxygen-mediated process. During the oxidation, no superoxide radical production could be detected with either ferricytochrome c or nitroblue tetrazolium. However, H2O2 has been found as one of the products. These observations are consistent with an oxidation-reduction reaction between singlet oxygen and NADPH to form H2O2 and NADP+, catalyzed by the light-activated photosensitizer hematoporphyrin.  相似文献   

20.
The four different inhibitors or groups of inhibitors, called I, II, IV and V, which could be separated from the inhibitor β complex from peelings of resting potatoes ( Solanum tuberosum L., variety Majestic) by thin layer chromatography in chloroform: 96% acetic acid (95:5 v/v), stimulated the oxygen uptake of discs of potato tubers during the first 4 to 5 h after addition of the substances. Number I was less active, the other three more active. Furthermore II, IV, and V significantly inhibited the uptake of inorganic phosphate by potato discs measured 24 and 5 h after addition of the substances, so that they seem to be uncouplers of oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号