首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract In Caenorhabditis elegans, the decision to develop into a reproductive adult or arrest as a dauer larva is influenced by multiple pathways including insulin-like and transforming growth factor beta (TGFbeta)-like signalling pathways. It has been proposed that lipophilic hormones act downstream of these pathways to regulate dauer formation. One likely target for such a hormone is DAF-12, an orphan nuclear hormone receptor that mediates these developmental decisions and also influences adult lifespan. In order to find lipophilic hormones we have generated lipophilic extracts from mass cultures of C. elegans and shown that they rescue the dauer constitutive phenotype of class 1 daf-2 insulin signalling mutants and the TGFbeta signalling mutant daf-7. These extracts are also able to rescue the lethal dauer phenotype of daf-9 mutants, which lack a P450 steroid hydroxylase thought to be involved in the synthesis of the DAF-12 ligand; extracts, however, have no effect on a DAF-12 ligand binding domain mutant that is predicted to be ligand insensitive. The production of this hormone appears to be DAF-9 dependent as extracts from a daf-9;daf-12 double mutant do not exhibit this activity. Preliminary fractionation of the lipophilic extracts shows that the activity is hydrophobic with some polar properties, consistent with a small lipophilic hormone. We propose that the dauer rescuing activity is a hormone synthesized by DAF-9 that acts through DAF-12.  相似文献   

2.
P. L. Larsen  P. S. Albert    D. L. Riddle 《Genetics》1995,139(4):1567-1583
The nematode Caenorhabditis elegans responds to conditions of overcrowing and limited food by arresting development as a dauer larva. Genetic analysis of mutations that alter dauer larva formation (daf mutations) is presented along with an updated genetic pathway for dauer vs. nondauer development. Mutations in the daf-2 and daf-23 genes double adult life span, whereas mutations in four other dauer-constitutive genes positioned in a separate branch of this pathway (daf-1, daf-4, daf-7 and daf-8) do not. The increased life spans are suppressed completely by a daf-16 mutation and partially in a daf-2; daf-18 double mutant. A genetic pathway for determination of adult life span is presented based on the same strains and growth conditions used to characterize Daf phenotypes. Both dauer larva formation and adult life span are affected in daf-2; daf-12 double mutants in an allele-specific manner. Mutations in daf-12 do not extend adult life span, but certain combinations of daf-2 and daf-12 mutant alleles nearly quadruple it. This synergistic effect, which does not equivalently extend the fertile period, is the largest genetic extension of life span yet observed in a metazoan.  相似文献   

3.
Parallel pathways control C. elegans reproductive development in response to environmental cues. Attenuation of daf-2 insulin-like or daf-7 TGFbeta-like signaling pathways cause developmental arrest at the stress resistant and long-lived dauer stage. Loss-of-function mutations in the cytochrome P450 gene daf-9 also cause dauer arrest and defects in cell migration. A rescuing daf-9::GFP fusion gene driven by the daf-9 promoter is expressed in two head cells at all stages, in the hypodermis from mid-second larval stage (L2) to the fourth larval stage (L4), and in the spermatheca of the adult hermaphrodite. Although the level of daf-9::GFP expression in the head cells and spermatheca is constant, hypodermal daf-9::GFP expression is modulated by multiple inputs. In particular, daf-9::GFP expression in the hypodermis is absolutely dependent on daf-12, the nuclear receptor that is negatively regulated by daf-9 gene activity, suggesting feedback control between daf-9 and daf-12 in this tissue. daf-9 expression exclusively in the hypodermis is sufficient to restore reproductive development in daf-9 mutant animals, suggesting that daf-9 functions in a cell nonautonomous manner. Furthermore, constitutive expression of daf-9 in the hypodermis suppresses dauer arrest of daf-7 mutant animals and inhibits dauer remodelling of some tissues in daf-2 mutant animals. Thus, daf-9 may integrate outputs from daf-2 and daf-7 signaling pathways to relay neuroendocrine signals through synthesis of a lipophilic hormone.  相似文献   

4.
Mutations in the human NPC1 gene cause most cases of Niemann-Pick type C (NP-C) disease, a fatal autosomal recessive neurodegenerative disorder. NPC1 is implicated in intracellular trafficking of cholesterol and glycolipids, but its exact function remains unclear. The C. elegans genome contains two homologs of NPC1, ncr-1 and ncr-2, and an ncr-2; ncr-1 double deletion mutant forms dauer larvae constitutively (Daf-c). We have analyzed the phenotypes of ncr single and double mutants in detail, and determined the ncr gene expression patterns. We find that the ncr genes function in a hormonal branch of the dauer formation pathway upstream of daf-9 and daf-12, which encode a cytochrome P450 enzyme and a nuclear hormone receptor, respectively. ncr-1 is expressed broadly in tissues with high levels of cholesterol, whereas expression of ncr-2 is restricted to a few cells. Both Ncr genes are expressed in the XXX cells, which are implicated in regulating dauer formation via the daf-9 pathway. Only the ncr-1 mutant is hypersensitive to cholesterol deprivation and to progesterone, an inhibitor of intracellular cholesterol trafficking. Our results support the hypothesis that ncr-1 and ncr-2 are involved in intracellular cholesterol processing in C. elegans, and that a sterol-signaling defect is responsible for the Daf-c phenotype of the ncr-2; ncr-1 mutant.  相似文献   

5.
During C. elegans development, animals must choose between reproductive growth or dauer diapause in response to sensory cues. Insulin/IGF-I and TGF-beta signaling converge on the orphan nuclear receptor daf-12 to mediate this choice. Here we show that daf-9 acts downstream of these inputs but upstream of daf-12. daf-9 and daf-12 mutants have similar larval defects and modulate insulin/IGF-I and gonadal signals that regulate adult life span. daf-9 encodes a cytochrome P450 related to vertebrate steroidogenic hydroxylases, suggesting that it could metabolize a DAF-12 ligand. Sterols may be the daf-9 substrate and daf-12 ligand because cholesterol deprivation phenocopies mutant defects. Sensory neurons, hypodermis, and somatic gonadal cells expressing daf-9 identify potential endocrine tissues. Evidently, lipophilic hormones influence nematode metabolism, diapause, and life span.  相似文献   

6.
The daf-9 gene functions to integrate transforming growth factor-beta and insulin-like signaling pathways to regulate Caenorhabditis elegans larval development. Mutations in daf-9 result in transient dauer-like larval arrest, abnormal reproductive development, molting defects and increased adult longevity. The phenotype is sterol-dependent, and dependent on the activity of DAF-12, a nuclear hormone receptor. Genetic tests show that daf-9 is upstream of daf-12 in the genetic pathways for larval development and adult longevity. daf-9 encodes a cytochrome P450 related to those involved in biosynthesis of steroid hormones in mammals. We propose that it specifies a step in the biosynthetic pathway for a DAF-12 ligand, which might be a steroid. The surprising cellular specificity of daf-9 expression (predominantly in two sensory neurons) supports a previously unrecognized role for these cells in neuroendocrine control of larval development, reproduction and life span.  相似文献   

7.
Nanji M  Hopper NA  Gems D 《Aging cell》2005,4(5):235-245
The DAF-2 insulin/insulin-like growth factor 1 (IGF-1) receptor signals via a phosphatidylinositol 3-kinase (PI3K) pathway to control dauer larva formation and adult longevity in Caenorhabditis elegans. Yet epistasis analysis suggests signal bifurcation downstream of DAF-2. We have used epistasis analysis to test whether the Ras pathway (which plays a role in signaling from mammalian insulin receptors) acts downstream of DAF-2. We find that an activated Ras mutation, let-60(n1046gf), weakly suppresses constitutive dauer diapause in daf-2 and age-1 (PI3K) mutants. Moreover, increased Ras pathway signaling partially suppresses the daf-2 mutant feeding defect, while reduced Ras pathway signaling enhances it. By contrast, activated Ras extends the longevity induced by mutation of daf-2, while reduced Ras pathway signaling partially suppresses it. Thus, Ras pathway signaling appears to act with insulin/IGF-1 signaling during larval development, but against it during aging.  相似文献   

8.
The daf-4 gene encodes a type II bone morphogenetic protein receptor in Caenorhabditis elegans that regulates dauer larva formation, body size and male tail patterning. The putative type I receptor partner for DAF-4 in regulating dauer larva formation is DAF-1. Genetic tests of the mechanism of activation of these receptors show that DAF-1 can signal in the absence of DAF-4 kinase activity. A daf-1 mutation enhances dauer formation in a daf-4 null background, whereas overexpression of daf-1 partially rescues a daf-4 mutant. DAF-1 alone cannot fully compensate for the loss of DAF-4 activity, indicating that nondauer development normally results from the activities of both receptors. DAF-1 signaling in the absence of a type II kinase is unique in the type I receptor family. The activity may be an evolutionary remnant, owing to daf-1's origin near the type I/type II divergence, or it may be an innovation that evolved in nematodes. daf-1 and daf-4 promoters both mediated expression of green fluorescent protein in the nervous system, indicating that a DAF-1/DAF-4 receptor complex may activate a neuronal signaling pathway. Signaling from a strong DAF-1/DAF-4 receptor complex or a weaker DAF-1 receptor alone may provide larvae with more precise control of the dauer/nondauer decision in a range of environmental conditions.  相似文献   

9.
E. A. Malone  T. Inoue    J. H. Thomas 《Genetics》1996,143(3):1193-1205
Based on environmental cues, the nervous system of Caenorhabditis elegans regulates formation of the dauer larva, an alternative larval form specialized for long-term survival under harsh conditions. Mutations that cause constitutive or defective dauer formation (Daf-c or Daf-d) have been identified and the genes ordered in a branched pathway. Most Daf-c mutations also affect recovery from the dauer stage. The semi-dominant mutation daf-28(sa191) is Daf-c but has no apparent effect on dauer recovery. We use this unique aspect of daf-28(sa191) to characterize the effects of several Daf-d and synthetic Daf-c mutations on dauer recovery. We present double mutant analysis that indicates that daf-28(sa191) acts at a novel point downstream in the genetic pathway for dauer formation. We also show that daf-28(sa191) causes a modest increase (12-13%) in life span. The phenotypes and genetic interactions of daf-28(sa191) are most similar to those of daf-2 and daf-23 mutations, which also cause a dramatic increase in life span. We present mapping and complementation data that suggest that daf-23 is the same gene as age-1, identified previously by mutations that extend life span. We find that age-1 alleles are also Daf-c at 27°.  相似文献   

10.
11.
12.
H A Tissenbaum  G Ruvkun 《Genetics》1998,148(2):703-717
Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.  相似文献   

13.
Inoue T  Thomas JH 《Genetics》2000,156(3):1035-1046
The dauer is a developmentally arrested alternative third larval stage of Caenorhabditis elegans. Entry into this state is regulated by environmental cues, including temperature, food, and the concentration of constitutively secreted dauer pheromone. Genetically, three parallel pathways have been found that regulate this process. Of these, the group 2 pathway, which includes the genes daf-1, daf-3, daf-4, daf-5, daf-7, daf-8, and daf-14, mediates the transduction of environmental signals through the ASI chemosensory neuron and encodes a TGF-beta-related signaling pathway. To identify additional genes that function in this pathway, we carried out a screen for suppressors of mutations in daf-1, daf-8, and daf-14. From the total of 36 mutations, seven complementation groups were identified. Three complementation groups correspond to the previously described genes daf-3, daf-5, and daf-12. Three correspond to novel genes scd-1, scd-2, and scd-3. Genetic analysis of these scd genes is presented here. A fourth complementation group was represented by a single mutation sa315, which affects the daf-2/age-1 insulin-related signaling pathway.  相似文献   

14.
15.
In C. elegans development, unfavorable growth conditions lead a larva to an arrested and enduring form called a dauer. To elucidate components upstream of DAF-7/TGF-beta in this control pathway, we isolated a mutant that was defective in daf-7 promoter::gfp reporter expression and showed an arrested (dauer-constitutive) phenotype. It has a new mutation in the daf-11 gene encoding a transmembrane guanylyl cyclase. We show that daf-11 gene and a related gene daf-21 act upstream of daf-7, and cilium-related genes che-2 and che-3 are placed between daf-11 and daf-7, in the genetic pathway controlling dauer formation. Expression of daf-11 cDNA by cell specific promoters suggests that daf-11 acts cell autonomously in ASI chemosensory neurons for daf-7 expression.  相似文献   

16.
EM Myers 《PloS one》2012,7(7):e40368
Caenorhabditis elegans enter an alternate developmental stage called dauer in unfavorable conditions such as starvation, overcrowding, or high temperature. Several evolutionarily conserved signaling pathways control dauer formation. DAF-7/TGFβ and serotonin, important ligands in these signaling pathways, affect not only dauer formation, but also the expression of one another. The heterotrimeric G proteins GOA-1 (Gα(o)) and EGL-30 (Gα(q)) mediate serotonin signaling as well as serotonin biosynthesis in C. elegans. It is not known whether GOA-1 or EGL-30 also affect dauer formation and/or daf-7 expression, which are both modulated in part by serotonin. The purpose of this study is to better understand the relationship between proteins important for neuronal signaling and developmental plasticity in both C. elegans and humans. Using promoter-GFP transgenic worms, it was determined that both goa-1 and egl-30 regulate daf-7 expression during larval development. In addition, the normal daf-7 response to high temperature or starvation was altered in goa-1 and egl-30 mutants. Despite the effect of goa-1 and egl-30 mutations on daf-7 expression in various environmental conditions, there was no effect of the mutations on dauer formation. This paper provides evidence that while goa-1 and egl-30 are important for normal daf-7 expression, mutations in these genes are not sufficient to disrupt dauer formation.  相似文献   

17.
18.
19.
Fisher AL  Lithgow GJ 《Aging cell》2006,5(2):127-138
The orphan nuclear hormone receptor gene daf-12 in Caenorhabditis elegans plays a key role in the regulation of development and determination of adult longevity. To understand the effects of daf-12 on aging we characterized the lifespan of loss-of-function and gain-of-function daf-12 alleles that have been identified on the basis of their effects on dauer development. We find that these mutations have opposing effects on longevity and resistance to oxidative and thermal stress which makes daf-12 the first gene with alleles that can extend or shorten lifespan. We find that the shortened lifespan of the loss-of-function mutation is due to accelerated aging in young adulthood rather than an adverse effect of the mutation on development. Microarray analysis of worms carrying the two alleles revealed a relatively small number of genes differentially expressed between the two genotypes. Comparison of the expression profiles with the profiles associated with dauer formation and long-lived daf-2 mutants revealed that while the profiles are largely different, there is significant overlap among the genes down-regulated, but not up-regulated, in all profiles. Several of these genes down-regulated in multiple long-lived worms have known effects on lifespan, and many of the genes belong to a family of poorly characterized genes that are strongly down-regulated in dauers, daf-2 mutants, and long-lived daf-12 mutants. Our results point to daf-12 modulating aging and stress responses in part through the repression of specific genes, and emphasize the role that the repression of genes that curtail maximal lifespan plays in lifespan determination.  相似文献   

20.
Caenorhabditis elegans dauer formation is controlled by multiple environmental factors. The chemosensory neuron ASI regulates dauer formation by secretion of DAF-7/TGF-beta, but the molecular targets of the DAF-7 ligand are incompletely defined and the cellular targets are unknown. We genetically characterized and cloned a putative transducer of DAF-7 signaling called daf-14 and found that it encodes a Smad protein. DAF-14 Smad has a highly unusual structure completely lacking the N-terminal domain found in all other Smad proteins known to date. daf-14 genetically interacts with daf-8, which encodes another Smad, and the interaction suggests partial functional redundancy between these two Smad proteins. We also studied the cellular targets of DAF-7 signaling by studying the sites of action of daf-14 and daf-4, the putative receptor for DAF-7. daf-14::gfp is expressed in multiple tissues that are remodeled during dauer formation. However, analysis of mosaics generated by free duplication loss and tissue-specific expression constructs indicate cell-nonautonomous function of daf-4, arguing against direct DAF-7 signaling to tissues throughout the animal. Instead, these experiments suggest the nervous system as a target of DAF-7 signaling and that the nervous system in turn regulates dauer formation by other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号