首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肌球蛋白轻链激酶 (MLCK)的活性片段 (MLCKF)能比完整的MLCK更有效地、以非钙依赖性的方式磷酸化肌球蛋白轻链 (MLC2 0 )。该片段是用胰蛋白酶水解MLCK ,再经DEAE 5 2柱层析分离而获得的 ,分子量约为 6 1kD。Western印迹已证实该MLCKF与完整的MLCK同源。MLCKF对肌球蛋白轻链的磷酸化作用及其作用特征通过甘油电泳及ScoinImage扫描软件检测 ,肌球蛋白ATP酶活性通过分光光度法检测。实验结果证实 ,MLCKF催化的MLC2 0 非钙依赖性磷酸化 (CIPM)比MLCK催化的CIPM效力高、耗能多 ,但比MLCK催化的MLC2 0 钙依赖性磷酸化 (CDPM)效力低、耗能少 ;MLCKF催化的CIPM与MLCK催化的CIPM均较MLCK催化的CDPM稳定 ,不易受温育温度、温育时间及离子浓度等变化的影响 ,且对MLCK抑制剂ML 9敏感性低。  相似文献   

2.
Activation of smooth muscle myosin light-chain kinase (MLCK) causes contraction. Here we have proven that MLCK controls Ca2+ entry (CE) in endothelial cells (ECs): MLCK antisense oligonucleotides strongly prevented bradykinin (BK)- and thapsigargin (TG)-induced endothelial Ca2+ response, while MLCK sense did not. We also show that the relevant mechanism is not phosphorylation of myosin light-chain (MLC): MLC phosphorylation by BK required CE, but MLC phosphorylation caused by the phosphatase inhibitor calyculin A did not trigger Ca2+ response. Most important, we provide for the first time strong evidence that, in contrast to its role in smooth muscle cells, activation of MLCK in ECs stimulates the production of important endothelium-derived vascular relaxing factors: MLCK antisense and MLCK inhibitors abolished BK- and TG-induced nitric oxide production, and MLCK inhibitors substantially inhibited acetylcholine-stimulated hyperpolarization of smooth muscle cell membrane in rat mesenteric artery. These results indicate that MLCK controls endothelial CE, but not through MLC phosphorylation, and unveils a hitherto unknown physiological function of the enzyme: vasodilation through its action in endothelial cells. The study discovers a counter-balancing role of MLCK in the regulation of vascular tone.  相似文献   

3.
ATP-dependent interactions between myosin and actin in the lower eukaryote, Physarum polycephalum, are inhibited by micromolar levels of Ca2+. This inhibition is mediated by the binding of Ca2+ to myosin, the phosphorylation of which is required if Ca2+ is to inhibit the activities of myosin (Kohama, K., Trends Pharmacol. Sci. 11, 433-435 (1990)). As the first step to examine whether Ca2+ also regulates phosphorylation in the actomyosin system, we purified myosin light chain kinase (MLCK) of 55 kDa almost to homogeneity. The MLCK activity was high whether or not Ca2+ was present. However, a Ca(2+)-dependent inhibitory factor (CIF) purified from Physarum (Okagaki et al., Biochem. Biophys. Res. Commun. 176, 564-570 (1991)) was shown to reduce the MLCK activity in a Ca(2+)-dependent manner. Using crude preparations, not only MLCK but also myosin heavy chain kinase and actin kinase were shown to be inhibited by Ca2+ half-maximally at micromolar levels. Since CIF is the only Ca(2+)-binding protein in the preparations, we propose that this inhibitory Ca(2+)-regulation of the kinases for actomyosin is mediated by CIF.  相似文献   

4.
The retinal cones of teleost fish contract at dawn and elongate at dusk. We have previously reported that we can selectively induce detergent-lysed models of cones to undergo either reactivated contraction or reactivated elongation, with rates and morphology comparable to those observed in vivo. Reactivated contraction is ATP dependent, activated by Ca2+, and inhibited by cAMP. In addition, reactivated cone contraction exhibits several properties that suggest that myosin phosphorylation plays a role in mediating Ca2+-activation (Porrello, K., and B. Burnside, 1984, J. Cell Biol., 98:2230-2238). We report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with trypsin-digested, unregulated myosin light chain kinase (MLCK) obtained from smooth muscle. This observation provides further evidence that MLCK plays a role in regulating cone contraction. We also report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with high concentrations of MgCl2 (10-20 mM). Mg2+-induced reactivated contraction is supported by inosine triphosphate (ITP) just as well as by ATP. Because ITP will not serve as a substrate for MLCK, this finding suggests that Mg2+-activation of contraction does not require myosin phosphorylation. Although Ca2+-induced contraction is completely blocked by cAMP at concentrations less than 10 microM, cAMP has no effect on cone contraction activated by unregulated MLCK or by high Mg2+ in the absence of Ca2+. Because trypsin digestion of MLCK cleaves off not only the Ca2+/calmodulin-binding site but also the site phosphorylated by cAMP-dependent protein kinase, and because Mg2+ activation of cone contraction circumvents MLCK action altogether, both these observations would be expected if cAMP inhibits reactivated cone contraction by catalyzing the phosphorylation of MLCK and thus reducing its affinity for Ca2+, as has been described for smooth muscle. Together our results suggest that in lysed cone models, myosin phosphorylation is sufficient for activating cone contraction, even in the absence of other Ca2+-mediated events, that cAMP inhibition of contraction is mediated by cAMP-dependent phosphorylation of MLCK, and that 10-20 mM Mg2+ can activate actin-myosin interaction to produce contraction in the absence of myosin phosphorylation.  相似文献   

5.
Initiation of smooth muscle contraction is associated with Ca2+/calmodulin activation of myosin light chain kinase which catalyzes the phosphorylation of the 20-kDa light chain of myosin. In tracheal smooth muscle cells in culture, the extent of myosin light chain phosphorylation is less than 10% at basal cytosolic free Ca2+ concentrations of 150 nM. Stimulation of these cells with serotonin, histamine, carbachol, or the Ca2+ ionophore, ionomycin, increases free cytosolic Ca2+ concentrations and the extent of myosin light chain phosphorylation. Light chain phosphorylation reaches a maximal value of 67% at Ca2+ concentrations below 1 microM. The relationship between the extent of light chain phosphorylation and cytosolic free Ca2+ concentration is apparently independent of the source of free intracellular Ca2+ or the agent used to stimulate the cells and is not altered by pre-exposure of the contractile apparatus to high concentrations of free Ca2+. Pretreatment of cells with 8-bromo-cyclic GMP or forskolin decreases free cytosolic Ca2+ concentrations and the extent of myosin light chain phosphorylation in response to histamine or ionomycin. Pretreatment with 8-bromo-cyclic GMP also decreases the maximal extent of light chain phosphorylation. These results indicate that cytosolic free Ca2+ concentration, per se, is a primary determinant for myosin light chain phosphorylation in tracheal smooth muscle cells.  相似文献   

6.
G J Mazzei  P R Girard  J F Kuo 《FEBS letters》1984,173(1):124-128
Cd2+ was found to mimic effectively, potentiate and antagonize the stimulatory action of Ca2+ on myosin light chain kinase (MLCK) and phospholipid-sensitive Ca2+-dependent protein kinase (PL-Ca-PK, or protein kinase C). PL-Ca-PK, however, was slightly less sensitive to Cd2+ regulation than was MLCK. Cd2+ also biphasically regulates (i.e., stimulation followed by inhibition) phosphorylation, in the homogenates of the rat caudal artery, of myosin light chain and other endogenous proteins catalyzed by MLCK and PL-Ca-PK. The activation by Cd2+ of MLCK was inhibited by anticalmodulins (e.g., R-24571), whereas the inhibition by a higher Cd2+ concentration of MLCK and PL-Ca-PK was reversed by thiol agents (e.g., cysteine). The present findings may provide one mechanism underlying the vascular toxicity of Cd2+, a major environmental pollutant.  相似文献   

7.
It is generally recognized that ventricular myosin regulatory light chains (RLC) are approximately 40% phosphorylated under basal conditions, and there is little change in RLC phosphorylation with agonist stimulation of myocardium or altered stimulation frequency. To establish the functional consequences of basal RLC phosphorylation in the heart, we measured mechanical properties of rat skinned trabeculae in which approximately 7% or approximately 58% of total RLC was phosphorylated. The protocol for achieving approximately 7% phosphorylation of RLC involved isolating trabeculae in the presence of 2,3-butanedione monoxime (BDM) to dephosphorylate RLC from its baseline level. Subsequent phosphorylation to approximately 58% of total was achieved by incubating BDM-treated trabeculae in solution containing smooth muscle myosin light chain kinase, calmodulin, and Ca2+ (i.e., MLCK treatment). After MLCK treatment, Ca2+ sensitivity of force increased by 0.06 pCa units and maximum force increased by 5%. The rate constant of force development (ktr) increased as a function of Ca2+ concentration in the range between pCa 5.8 and pCa 4.5. When expressed versus pCa, the activation dependence of ktr appeared to be unaffected by MLCK treatment; however, when activation was expressed in terms of isometric force-generating capability (as a fraction of maximum), MLCK treatment slowed ktr at submaximal activations. These results suggest that basal phosphorylation of RLC plays a role in setting the kinetics of force development and Ca2+ sensitivity of force in cardiac muscle. Our results also argue that changes in RLC phosphorylation in the range examined here influence actin-myosin interaction kinetics differently in heart muscle than was previously reported for skeletal muscle.  相似文献   

8.
Characterization of myosin light-chain kinase from bovine adrenal medulla   总被引:1,自引:0,他引:1  
Partially purified bovine adrenal medullary myosin light-chain kinase (MLCK) possesses a Stoke's radius of 79 A and a sedimentation coefficient of 3.95 +/- 0.45 S, yielding a native molecular weight of 150,000 +/- 17,000 g/mol and a frictional ratio of 2.24. It catalyzes the phosphorylation of the isolated light chain of skeletal muscle myosin and the light chain of intact adrenal medullary myosin, but not phosphorylase b or histone. The activation of MLCK by calmodulin is specific and dose dependent, yielding a K0.5 value of 9.0 nM; the dose response curve with respect to free Ca2+ is biphasic, exhibiting a stimulatory phase at low free Ca2+ concentrations (K0.5 = 0.17 microM) and an inhibitory phase at higher free Ca2+ concentrations (400-3000 microM). Michaelis-Menten kinetics are observed for ATP, yielding a Km for ATP of 25 microM and a Vmax of 23.2 nmol/min/mg. However, positive cooperative kinetics are observed for the skeletal muscle myosin light chain, yielding a Hill coefficient of 3.57, a K0.5 for light chain of 27 microM and a Vmax of 16.6 nmol/min/mg. A stoichiometry of phosphorylation of approximately 1 mol of phosphate/mol of skeletal muscle myosin light chain was observed. Therefore, adrenal medullary MLCK is similar in most, but not all, of its physical and kinetics properties to MLCKs isolated from other sources and may serve to regulate actin-myosin contractile activity in the adrenal medulla.  相似文献   

9.
Myosin II regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) is implicated in many cellular actin cytoskeletal functions. We examined MLCK activation quantitatively with a fluorescent biosensor MLCK where Ca(2+)-dependent increases in kinase activity were coincident with decreases in fluorescence resonance energy transfer (FRET) in vitro. In cells stably transfected with CaM sensor MLCK, increasing [Ca(2+)](i) increased MLCK activation and RLC phosphorylation coincidently. There was no evidence for CaM binding but not activating MLCK at low [Ca(2+)](i). At saturating [Ca(2+)](i) MLCK was not fully activated probably due to limited availability of cellular Ca(2+)/CaM.  相似文献   

10.
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) in smooth muscle by myosin light chain kinase (MLCK) and dephosphorylation by myosin light chain phosphatase (MLCP) are subject to modulatory cascades that influence the sensitivity of RLC phosphorylation and hence contraction to intracellular Ca(2+) concentration ([Ca(2+)](i)). We designed a CaM-sensor MLCK containing smooth muscle MLCK fused to two fluorescent proteins linked by the MLCK CaM-binding sequence to measure kinase activation in vivo and expressed it specifically in mouse smooth muscle. In phasic bladder muscle, there was greater RLC phosphorylation and force relative to MLCK activation and [Ca(2+)](i) with carbachol (CCh) compared with KCl treatment, consistent with agonist-dependent inhibition of MLCP. The dependence of force on MLCK activity was nonlinear such that at higher concentrations of CCh, force increased with no change in the net 20% activation of MLCK. A significant but smaller amount of MLCK activation was found during the sustained contractile phase. MLCP inhibition may occur through RhoA/Rho-kinase and/or PKC with phosphorylation of myosin phosphatase targeting subunit-1 (MYPT1) and PKC-potentiated phosphatase inhibitor (CPI-17), respectively. CCh treatment, but not KCl, resulted in MYPT1 and CPI-17 phosphorylation. Both Y27632 (Rho-kinase inhibitor) and calphostin C (PKC inhibitor) reduced CCh-dependent force, RLC phosphorylation, and phosphorylation of MYPT1 (Thr694) without changing MLCK activation. Calphostin C, but not Y27632, also reduced CCh-induced phosphorylation of CPI-17. CCh concentration responses showed that phosphorylation of CPI-17 was more sensitive than MYPT1. Thus the onset of agonist-induced contraction in phasic smooth muscle results from the rapid and coordinated activation of MLCK with hierarchical inhibition of MLCP by CPI-17 and MYPT1 phosphorylation.  相似文献   

11.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

12.
Phosphorylation of myosin II regulatory light chains (RLC) by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) is a critical step in the initiation of smooth muscle and non-muscle cell contraction. Post-translational modifications to MLCK down-regulate enzyme activity, suppressing RLC phosphorylation, myosin II activation, and tension development. Here we report that PAK2, a member of the Rho family of GTPase-dependent kinases, regulates isometric tension development and myosin II RLC phosphorylation in saponin permeabilized endothelial monolayers. PAK2 blunts tension development by 75% while inhibiting diphosphorylation of myosin II RLC. Cdc42-activated placenta and recombinant, constitutively active PAK2 phosphorylate MLCK in vitro with a stoichiometry of 1.71 +/- 0. 21 mol of PO(4)/mol of MLCK. This phosphorylation inhibits MLCK phosphorylation of myosin II RLC. PAK2 catalyzes MLCK phosphorylation on serine residues 439 and 991. Binding calmodulin to MLCK blocks phosphorylation of Ser-991 by PAK2. These results demonstrate that PAK2 can directly phosphorylate MLCK, inhibiting its activity and limiting the development of isometric tension.  相似文献   

13.
Smooth muscles are divided into slowly contracting tonic and relatively fast phasic muscles. In both cases Ca2+ is a key mediator of the contractile response. However, the appearance of a tonic component during sphincter or arterial muscle contraction and its absence in contracting visceral smooth muscle is characteristic of their difference. We have found that in chicken tissues phorbol 12,13-dibutyrate (PDBu) induces a sustained contraction in carotid arterial muscle, but provokes no contraction in phasic gizzard smooth muscle. Next we were aimed to find differences in PDBu-induced phosphorylation of the key proteins involved in regulation of smooth muscle contraction, i.e. caldesmon, myosin light chain kinase (MLCK), and the myosin light chain kinase-related protein (KRP, also known as telokin). Two correlative differences were observed. 1. PDBu stimulated phosphorylation of MLCK in tonic smooth muscle and had no effect on the level of MLCK phosphorylation in phasic muscle. Phosphopeptide mapping suggests the involvement of mitogen-activated protein (MAP) kinases in phosphorylation of MLCK in situ. 2. PDBu induced phosphorylation of MAP-kinase sites in caldesmon in both types of smooth muscle, but this phosphorylation had no significant effect on caldesmon functional activity in vitro. For the first time we have shown that in gizzard PDBu also stimulates a yet unknown transitory caldesmon-kinase different from protein kinase, C, Ca2+/calmodulin-dependent kinase II and casein kinase CK2. 3. No significant difference was found in the kinetics of PDBu-dependent phosphorylation of KRP in tonic and phasic smooth muscles. KRP was also demonstrated to be a major phosphoprotein in smooth muscle phosphorylated in vivo at several sites located within its N-terminal sequence. Protein kinases able to phosphorylate these sites were identified in vitro. Among them, MAP-kinase was suggested to phosphorylate a serine residue homologous to that phosphorylated in MLCK. 4. p42erk2 and p38 MAP-kinases were found in phasic and tonic smooth muscles. Both were responsive to PDBu in cultured chicken aortic smooth muscle cells, and their role in phosphorylation of MLCK and low molecular weight isoform of caldesmon was evaluated.  相似文献   

14.
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction.  相似文献   

15.
Ca2+-sensitization of smooth muscle occurs through inhibition of myosin light chain phosphatase (MLCP) leading to an increase in the MLCK:MLCP activity ratio. MLCP is inhibited through phosphorylation of its regulatory subunit (MYPT-1) following activation of the RhoA/Rho kinase (ROK) pathway or through phosphorylation of the PP1c inhibitory protein, CPI-17, by PKC delta or ROK. Here, we explore the crosstalk between these two modes of MLCP inhibition in a smooth muscle of a natural CPI-17 knockout, chicken amnion. GTPgammaS elicited Ca2+-sensitized force which was relaxed by GDI or Y-27632, however, U46619, carbachol and phorbol ester failed to induce Ca2+-sensitized force, but were rescued by recombinant CPI-17, and were sensitive to Y-27632 inhibition. In the presence, but not absence, of CPI-17, U46619 also significantly increased GTP.RhoA. There was no affect on MYPT-1 phosphorylation at T695, however, T850 phosphorylation increased in response to GTPgammaS stimulation. Together, these data suggest a role for CPI-17 upstream of RhoA activation possibly through activation of another PP1 family member targeted by CPI-17.  相似文献   

16.
Cross-linked complex of gizzard myosin light chain kinase (MLCK) and calmodulin (CM) was produced by glutaraldehyde treatment of a mixture of these proteins in a high Ca2+ (0.1 mM) solution. Although the specific activity was reduced, this complex showed MLCK activity in a Ca2+-independent manner, different from the original MLCK whose activity was Ca2+-dependent. Chlorpromazine, one of the CM antagonists, was no longer able to inhibit the MLCK activity of this complex. These observations support the previously proposed hypothesis on the regulatory mechanism of MLCK activity via Ca2+. This complex could be regarded as another kind of Ca2+-independent MLCK different from that obtained by chymotryptic digestion of MLCK (Walsh, M.P., Dabrowska, R., Hinkins, S., & Hartshorne, D.J. (1982) Biochemistry 21, 1919-1925). This complex caused superprecipitation of gizzard actomyosin and enhanced actin-activated ATPase of myosin Ca2+-independently.  相似文献   

17.
Contraction of rat uterine smooth muscle related to phosphorylation state of myosin light chain under various conditions was investigated. In the Ca2(+)-containing medium, both high K+ and oxytocin induced marked contraction of the muscle accompanied by pronounced phosphorylation of myosin light chain. In the Ca2(+)-free medium, although both vanadate and oxytocin induced slight contraction, phosphorylation of myosin light chain was only evident for vanadate but not for oxytocin. It was suggested that another mechanism distinct from myosin light chain phosphorylation might be involved in Ca2(+)-independent contraction of uterine smooth muscle elicited by oxytocin.  相似文献   

18.
Cellular mechanisms for the regulation of Ca(2+)-dependent myosin light chain phosphorylation were investigated in bovine tracheal smooth muscle. Increases in the free intracellular Ca2+ concentration ([Ca2+]i), light chain phosphorylation, and force were proportional to carbachol concentration. KCaM, the concentration of Ca2+/calmodulin required for half-maximal activation of myosin light chain kinase, also increased proportionally, presumably due to Ca(2+)-dependent phosphorylation of the kinase. Isoproterenol treatment inhibited agonist-induced contraction by decreasing [Ca2+]i and thereby light chain phosphorylation. Depolarization by increasing concentrations of KCl also resulted in proportional increases in [Ca2+]i, KCaM, light chain phosphorylation, and force. However, the [Ca2+]i required to obtain a given value of either light chain phosphorylation or KCaM was greater in KCl-depolarized tissues compared to carbachol-treated tissues. In muscles contracted with KCl, isoproterenol treatment resulted in diminished light chain phosphorylation and force without alterations in [Ca2+]i or KCaM. Thus, isoproterenol inhibition of KCl-induced contraction results from a cellular mechanism different from that found in agonist-induced contraction. In neither case does isoproterenol produce relaxation by altering the calmodulin activation properties of myosin light chain kinase.  相似文献   

19.
The Ca2+ -activated neutral protease can proteolyze both Ca2+ -dependent cyclic nucleotide phosphodiesterase and smooth muscle myosin light chain kinase. Ca2+ -dependent cyclic nucleotide phosphodiesterase from rat brain was converted to the Ca2+ -independent active form by Ca2+ -activated protease. The proteolytic effects on myosin light chain kinase of Ca2+-activated protease differed in the presence and absence of the Ca2+-calmodulin (CaM) complex. In the presence of bound CaM, myosin light chain kinase (130k dalton) was degradated to a major fragment of 62 kDa, which had Ca2+/CaM-dependent enzyme and CaM-binding activity. When digestion occurred in the absence of bound CaM, myosin light chain kinase cleaved to a fragment of 60 kDa. This peptide had no enzymatic activity in the presence or absence of the Ca2+-CaM complex. Available evidence suggests that the Ca2+-activated proteases may recognize the conformational change of smooth muscle myosin light chain kinase induced by Ca2+-CaM complex.  相似文献   

20.
Activation of hepatic stellate cells (HSCs) results in cirrhosis and portal hypertension due to intrahepatic resistance. Activated HSCs increase their contraction after receptor agonist stimulation; however, the signaling pathways for the regulation of contraction are not fully understood. The aim of this study was to elucidate the change in contractile mechanisms of HSCs after cirrhotic activation. The expression pattern of contractile regulatory proteins was analyzed with quantitative RT-PCR and Western blotting. The phosphorylation levels of myosin light chain (MLC), 17-kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17), and MLC phosphatase targeting subunit 1 (MYPT1) after endothelin-1 (ET-1) stimulation in culture-activated HSCs were measured using phosphorylation-specific antibodies. In vivo-activated HSCs were isolated from rats subjected to bile duct ligation and repeated dimethylnitrosoamine injections. HSCs showed increased expression of not only α-smooth muscle actin, but also the contractile regulatory proteins MLC kinase (MLCK), Rho kinase 2 (ROCK2), and CPI-17 during HSC activation in vitro. In culture-activated HSCs, ET-1 increased phosphorylation of CPI-17 at Thr18, which was markedly inhibited by the PKC inhibitor Ro-31-8425. ET-1 induced phosphorylation of MYPT1 at Thr853, which was suppressed by the ROCK inhibitor Y-27632. ET-1 induced sustained phosphorylation of MLC at Thr18/Ser19, which was inhibited by both Ro-31-8425 and Y-27632. Consistent with the data obtained from the in vitro study, HSCs isolated from cirrhotic rats showed increased expression of α-smooth muscle actin, MLCK, CPI-17, and ROCK2 compared with HSCs from nontreated rats. Furthermore, MLC phosphorylation in in vivo-activated HSCs was increased, according to enhanced phosphorylation of CPI-17 and MYPT1 in the presence of ET-1. These results suggest that activated HSCs may participate in constriction of hepatic sinusoids in the cirrhotic liver through both Ca(2+)-dependent (MLCK pathway) and Ca(2+)-sensitization mechanism (CPI-17 and MYPT1 pathways).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号