首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues.  相似文献   

2.
In most eukaryotes, genetic exchange between paired homologs occurs in the context of a tripartite proteinaceous structure called the synaptonemal complex (SC). Genetic analyses have revealed that the genes encoding SC proteins are vital for meiotic chromosome pairing and recombination. However, the number, nature and/or the mechanism used by SC proteins to align chromosomes are yet to be clearly defined. Here, we show that Saccharomyces cerevisiae Hop1, a component of SC, was able to promote pairing of double-stranded DNA helices containing arrays of mismatched G/G sequences. Significantly, pairing was rapid and robust, independent of homology in the arms flanking the central G/G region, and required four contiguous guanine residues. Furthermore, data from truncated DNA double helices showed that 20 bp on either side of the 8 bp mismatched G/G region was essential for efficient synapsis. Methylation interference indicated that pairing between the two DNA double helices involves G quartets. These results suggest that Hop1 is likely to play a direct role in meiotic chromosome pairing and recombination by its ability to promote synapsis between double-stranded DNA helices containing arrays of G residues. To our knowledge, Hop1 is the first protein shown to promote synapsis of DNA double helices from yeast or any other organism.  相似文献   

3.
The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.  相似文献   

4.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

5.
Corrigendum     
Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination.  相似文献   

6.
J M Vega  M Feldman 《Genetics》1998,150(3):1199-1208
The analysis of the pattern of isochromosome pairing allows one to distinguish factors affecting presynaptic alignment of homologous chromosomes from those affecting synapsis and crossing-over. Because the two homologous arms in an isochromosome are invariably associated by a common centromere, the suppression of pairing between these arms (intrachromosome pairing) would indicate that synaptic or postsynaptic events were impaired. In contrast, the suppression of pairing between an isochromosome and its homologous chromosome (interchromosome pairing), without affecting intrachromosome pairing, would suggest that homologous presynaptic alignment was impaired. We used such an isochromosome system to determine which of the processes associated with chromosome pairing was affected by the Ph1 gene of common wheat-the main gene that restricts pairing to homologues. Ph1 reduced the frequency of interchromosome pairing without affecting intrachromosome pairing. In contrast, intrachromosome pairing was strongly reduced in the absence of the synaptic gene Syn-B1. Premeiotic colchicine treatment, which drastically decreased pairing of conventional chromosomes, reduced interchromosome but not intrachromosome pairing. The results support the hypothesis that premeiotic alignment is a necessary stage for the regularity of meiotic pairing and that Ph1 relaxes this alignment. We suggest that Ph1 acts on premeiotic alignment of homologues and homeologues as a means of ensuring diploid-like meiotic behavior in polyploid wheat.  相似文献   

7.
Recombination and synapsis of homologous chromosomes are hallmarks of meiosis in many organisms. Meiotic recombination is initiated by Spo11-induced DNA double-strand breaks (DSBs), whereas chromosome synapsis is mediated by a tripartite structure named the synaptonemal complex (SC). Previously, we proposed that budding yeast SC is assembled via noncovalent interactions between the axial SC protein Red1, SUMO chains or conjugates, and the central SC protein Zip1. Incomplete synapsis and unrepaired DNA are monitored by Mec1/Tel1-dependent checkpoint responses that prevent exit from the pachytene stage. Here, our results distinguished three distinct modes of Mec1/Tec1 activation during early meiosis that led to phosphorylation of three targets, histone H2A at S129 (γH2A), Hop1, and Zip1, which are involved, respectively, in DNA replication, the interhomolog recombination and chromosome synapsis checkpoint, and destabilization of homology-independent centromere pairing. γH2A phosphorylation is Red1 independent and occurs prior to Spo11-induced DSBs. DSB- and Red1-dependent Hop1 phosphorylation is activated via interaction of the Red1-SUMO chain/conjugate ensemble with the Ddc1-Rad17-Mec3 (9-1-1) checkpoint complex and the Mre11-Rad50-Xrs2 complex. During SC assembly, Zip1 outcompetes 9-1-1 from the Red1-SUMO chain ensemble to attenuate Hop1 phosphorylation. In contrast, chromosome synapsis cannot attenuate DSB-dependent and Red1-independent Zip1 phosphorylation. These results reveal how DNA replication, DSB repair, and chromosome synapsis are differentially monitored by the meiotic checkpoint network.  相似文献   

8.
During meiotic prophase homologous chromosomes find each other and pair. Then they synapse, as the linear protein core (axial element or lateral element) of each homologous chromosome is joined together by a transverse central element, forming the tripartite synaptonemal complex (SC). Ten uncloned Zea mays mutants in our collection were surveyed by transmission electron microscopy by making silver-stained spreads of SCs to identify mutants with non-homologous synapsis or improper synapsis. To analyse the mutants further, zyp1, the maize orthologue of the Arabidopsis central element component ZYP1 was cloned and an antibody was made against it. Using antibodies against ZYP1 and the lateral element components AFD1 and ASY1, it was found that most mutants form normal SCs but are defective in pairing. The large number of non-homologous synapsis mutants defective in pairing illustrates that synapsis and pairing can be uncoupled. Of the ten mutants studied, only dsy2 undergoes normal homologous chromosome recognition needed for homologous pairing. The dsy2 mutation fails to maintain the SC. ZYP1 elongation is blocked at zygotene, and only dots of ZYP1 are seen at prophase I. Another mutant, mei*N2415 showed incomplete but homologous synapsis and ASY1 and AFD1 have a normal distribution. Although installation of ZYP1 is initiated at zygotene, its progression is slowed down and not completed by pachytene in some cells and ZYP1 is not retained on pachytene chromosomes. The mutants described here are now available through the Maize Genetics Cooperation Stock Center (http://maizecoop.cropsci.uiuc.edu/).  相似文献   

9.
Zickler D 《Chromosoma》2006,115(3):158-174
This review focuses on various aspects of chromosome homology searching and their relationship to meiotic and vegetative pairing and to the silencing of unpaired copies of genes. Chromosome recognition and pairing is a prominent characteristic of meiosis; however, for some organisms, this association (complete or partial) is also a normal part of nuclear organization. The multiple mechanisms suggested to contribute to homologous pairing are analyzed. Recognition of DNA/DNA homology also plays an important role in detecting DNA segments that are present in inappropriate number of copies before and during meiosis. In this context, the mechanisms of methylation induced premeiotically, repeat-induced point mutation, meiotic silencing by unpaired DNA, and meiotic sex chromosome inactivation will be discussed. Homologue juxtaposition during meiotic prophase can be divided into three mechanistically distinct steps, namely, recognition, presynaptic alignment, and synapsis by the synaptonemal complex (SC). In most organisms, these three steps are distinguished by their dependence on DNA double-strand breaks (DSBs). The coupling of SC initiation to (and downstream effects of) DSB formation and the exceptions to this dependency are discussed. Finally, this review addresses the specific factors that appear to promote chromosome movement at various stages of meiotic prophase, most particularly at the bouquet stage, and on their significance for homologue pairing and/or achieving a final pachytene configuration.The synaptonemal complex - 50 years  相似文献   

10.
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv)) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv) during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.  相似文献   

11.
The pairing behavior of the Z and W chromosomes in the female northern bobwhite quail (Colinus virginianus) was analyzed by electron microscopy of silver-stained synaptonemal complexes (SCs). After autosomal pairing was completed, synapsis of the sex chromosomes initiated at the short-arm end of the W chromosome and one end of the Z chromosome. Synapsis then progressed unidirectionally, producing a sex bivalent in which the entire length of the W axis was paired with an equivalent length of the Z axis. Progressive contraction and asymmetrical twisting of the Z axis ultimately resulted in a fully paired configuration with aligned axial ends. Further contraction of the Z axis reduced the extent of asymmetrical twisting such that only the nonaligned centromeric regions distinguished the SC of the ZW bivalent from SCs of similar-sized autosomes in late-pachytene nuclei. Quantitative analyses indicated that the length of the Z axis shortened significantly during the adjustment process, whereas no significant difference occurred in the length of the W axis. The nonalignment of the centromeric regions during transitional stages of ZW synapsis indicates that direct heterosynapsis of nonhomologous segments, followed by axial equalization of the length inequality, is responsible for the length adjustment during synapsis in the sex chromosomes of the bobwhite quail.  相似文献   

12.
During meiosis, homologous chromosome pairing and synapsis are essential for subsequent meiotic recombination (crossing-over). Discontinuous regions (gaps) and unsynapsed regions (splits) were most frequently observed in the heterochromatic regions of bivalent synaptonemal complex (SC) 9, and we have previously demonstrated that gaps and splits significantly altered the distribution of MLH1 recombination foci on SC 9. Here, immunofluorescence techniques (using antibodies against SC proteins and the crossover-associated MLH1 protein) were combined with a centromere-specific fluorescence in situ hybridization technique that allows identification of every individual chromosome. The effect of gaps/splits on meiotic recombination patterns in autosomes other than chromosome 9 during the pachytene stage of meiotic prophase was then examined in 6,026 bivalents from 262 pachytene cells from three human males. In 64 analyzed cells with a gapped SC 9, the frequency of MLH1 foci in SCs 5 and 10 and in SC arms 10q, 11p and 16q was decreased compared to 168 analyzed cells with a normally-synapsed SC 9 (controls). In 24 analyzed cells with splits in SC 9, there was a significant reduction in MLH1 focus frequency for SC 5q and the whole SC5 bivalent. The positioning of MLH1 foci on other SCs in cells with gapped/split SC 9 was not altered. These studies suggest that gaps and splits not only have a cis effect, but may also have a trans effect on meiotic recombination in humans.  相似文献   

13.
Meiotic chromosome segregation requires homologue pairing, synapsis, and crossover recombination, which occur during meiotic prophase. Telomere-led chromosome motion has been observed or inferred to occur during this stage in diverse species, but its mechanism and function remain enigmatic. In Caenorhabditis elegans, special chromosome regions known as pairing centers (PCs), rather than telomeres, associate with the nuclear envelope (NE) and the microtubule cytoskeleton. In this paper, we investigate chromosome dynamics in living animals through high-resolution four-dimensional fluorescence imaging and quantitative motion analysis. We find that chromosome movement is constrained before meiosis. Upon prophase onset, constraints are relaxed, and PCs initiate saltatory, processive, dynein-dependent motions along the NE. These dramatic motions are dispensable for homologous pairing and continue until synapsis is completed. These observations are consistent with the idea that motions facilitate pairing by enhancing the search rate but that their primary function is to trigger synapsis. This quantitative analysis of chromosome dynamics in a living animal extends our understanding of the mechanisms governing faithful genome inheritance.  相似文献   

14.
In C.?elegans, meiotic chromosome pairing is initiated by association of chromosomal sites known as pairing centers (PCs) with the nuclear periphery. The Dernburg and Zetka laboratories have shown that recruitment of Polo kinases to PCs at the nuclear envelope is essential to promote PC complex aggregation, pairing, and synapsis.  相似文献   

15.
16.
During meiosis, chromosomes must find and align with their homologous partners. SUN and KASH-domain protein pairs play a conserved role by establishing transient linkages between chromosome ends and cytoskeletal forces across the intact nuclear envelope (NE). In C.?elegans, a pairing center (PC) on each chromosome mediates homolog pairing and linkage to the microtubule network. We report that the polo kinases PLK-1 and PLK-2 are targeted to the PC by ZIM/HIM-8-pairing proteins. Loss of plk-2 inhibits chromosome pairing and licenses synapsis between nonhomologous chromosomes, indicating that PLK-2 is required for PC-mediated interhomolog interactions. plk-2 is also required for meiosis-specific phosphorylation of SUN-1 and establishment of dynamic SUN/KASH (SUN-1/ZYG-12) modules that promote homolog pairing. Our results provide key insights into the regulation of homolog pairing and reveal that targeting of polo-like kinases to the NE by meiotic chromosomes establishes the conserved linkages to cytoskeletal forces needed for homology assessment.  相似文献   

17.

Background  

Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC.  相似文献   

18.
The mechanisms of homologous chromosome pairing were studied in synaptonemal complex (SC) spreads of F1 Brahman (Bos indicus) x Hereford (Bos taurus) cattle. The most common SC abnormalities were bivalents with partial pairing failure and interlocks. While C-band polymorphisms could underlie most of the SC abnormalities observed in the full-blood cattle, other causes seem also to be contributing in the hybrids. The pattern of the abnormalities indicates that genic differences between the species were probably involved. Pachytene substaging data suggest that in some spreads, early pachytene bivalents with partial pairing failure may achieve complete synapsis or may be converted to interlocks by late pachytene.  相似文献   

19.
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.  相似文献   

20.
We have investigated the role of pairing centers (PCs), cis-acting sites required for accurate segregation of homologous chromosomes during meiosis in C. elegans. We find that these sites play two distinct roles that contribute to proper segregation. Chromosomes lacking PCs usually fail to synapse and also lack a synapsis-independent stabilization activity. The presence of a PC on just one copy of a chromosome pair promotes synapsis but does not support synapsis-independent pairing stabilization, indicating that these functions are separable. Once initiated, synapsis is highly processive, even between nonhomologous chromosomes of disparate lengths, elucidating how translocations suppress meiotic recombination in C. elegans. These findings suggest a multistep pathway for chromosome synapsis in which PCs impart selectivity and efficiency through a "kinetic proofreading" mechanism. We speculate that concentration of these activities at one region per chromosome may have coevolved with the loss of a point centromere to safeguard karyotype stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号