首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The conserved polarity proteins Par6 and aPKC regulate cell polarization processes. However, increasing evidence also suggests that they play a role in oncogenic progression. During tumor progression, epithelial to mesenchymal transition (EMT) delineates an evolutionary conserved process that converts stationary epithelial cells into mesenchymal cells, which have an acquired ability for independent migration and invasion. In addition to signaling pathways that alter genetic programes that trigger the loss of cell-cell adhesion, alternative pathways can alter cell plasticity to regulate cell-cell cohesion and increase invasive potential. One such pathway involves TGFβ-induced phosphorylation of Par6. In epithelial cells, Par6 phosphorylation results in the dissolution of junctional complexes, cytoskeletal remodelling, and increased metastatic potential. Recently, we found that aPKC can also phosphorylate Par6 to drive EMT and increase the migratory potential of non-small cell lung cancer cells. This result has implications with respect to homeostatic and developmental processes involving polarization, and also with respect to cancer progression—particularly since aPKC has been reported to be an oncogenic regulator in various tumor cells.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
在癌症类型中,上皮癌占绝大多数。从良性腺瘤过渡到恶性癌和转移期间,上皮肿瘤细胞获得去分化、迁移和入侵行为,同时上皮-间质转化(epithelial-mesenchymal transition EMT)伴随着显著的细胞形态学变化、细胞与细胞间及细胞与基质之间的粘附性丢失及重塑、并获得迁徙和侵袭能力。正如完全分化的上皮细胞转换成低分化、迁移和侵入性间质细胞,其涉及到一个高度的细胞可塑性、大量不同的基因和表观遗传学改变,因此EMT本身是一个多阶段的过程。该综述的目的是系统地总结EMT分子机制及EMT与肿瘤关系的最新进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号