首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well recognized that diet-induced dysfunctions in skeletal muscle are closely related with many metabolic diseases, such as obesity and diabetes. In the present study, we identified global changes in gender-dependent gene expressions in the soleus muscle of lean and obese rats fed a high fat diet (HFD), using DNA microarray analysis. Prior to microarray analysis, the body weight gains were found to be higher in male HFD rats than the female HFD rats. To better understand the detailed phenotypic differences in response to HFD feeding, we identified differential gene expression in soleus muscle between the genders. To this end, we extracted and summarized the genes that were up- or down-regulated more than 1.5-fold between the genders in the microarray data. As expected, a greater number of genes encoding myofibrillar proteins and glycolytic proteins were expressed higher in males than females when exposed to HFD, reflecting greater muscular activity and higher capacity for utilizing glucose as an energy fuel. However, a series of genes involved in oxidative metabolism and cellular defenses were more up-regulated in females than males. These results allowed us to conclude that compared to males, females have greater fat clearing capacity in skeletal muscle through the activation of genes encoding enzymes for fat oxidation. In conclusion, our microarray data provide a better understanding of the molecular events underlying gender dimorphism in soleus muscle, and will provide valuable information in improving gender awareness in the health care system.  相似文献   

2.
In the present study, we identified the interscapular brown adipose tissue (BAT) genes showing differential expression using DNA microarray analysis in order to better understand a gender-difference in gene regulation, as well as molecular abnormalities in dietinduced obesity. To understand the detailed changes in the gene expression profiles in BAT caused by HFD feeding, we extracted and summarized the genes that were up- or down-regulated by more than 1.5-fold between the genders. In this analysis, significant global changes were observed at the mRNA levels between the genders, as well as lean and obese rat BAT rendered by a HFD. Herein, we report for the first time that a series of genes, which might be involved in fatty acid oxidation and thermogenic regulation, were more highly expressed in females than in males. These results allowed us to conclude that compared to males, females have greater fat clearing capacity through the activation of genes encoding enzymes of fat oxidation. In addition, we found that females have higher thermogenic capacity due to increased expressions of genes involved in energy expenditure. In conclusion, the microarray data of gender dimorphism in BAT will prove valuable in improving gender awareness in the health care system and for the development of evidence-based gender specific clinical recommendations.  相似文献   

3.
4.
The primary aim of the present study was to define central and peripheral physiological differences between dietary obesity-susceptible (DOS) and obesity-resistant (DOR) outbred Sprague Dawley (SD) rats when given a moderate high fat diet containing 32.34% of energy as a fat. After a 9-week feeding period, the DOS-SD rats consumed significantly more feed (11.1%) and had higher abdominal (39.9%) and epididymal (27.5%) fat pads than the DOR-SD rats. In addition, serum leptin and insulin levels were significantly increased in the DOS-SD rats compared with those in the DOR-SD rats. However, we did not observe significant differences in serum triglyceride, cholesterol and glucose. No differences in hypothalamic OB-Ra and Rb mRNA expressions were found between the two groups. In contrast, arcuate NPY immunohistochemical expression was much higher in the DOS-SD rats than in the DOR-SD rats, though NPY expression in the supraoptic and paraventricular nuclei was not different between the two phenotypes. In peripheral tissues, the DOS-SD rats showed noticeably increased acetyl CoA carboxylase (ACC) mRNA expression in the liver, not epididymal fat. However, Western blot of peroxisomal proliferator activated factor gamma (PPAR gamma) in the liver and epididymal fat was not different between the two phenotypes of SD rats. It was concluded that different body weight phenotypes within outbred SD population responded differently to the development of dietary induced obesity via altered anabolic features in the hypothalamus and liver.  相似文献   

5.
以高脂饮食小鼠为模型,多角度分析高脂饮食对小鼠胃蛋白组表达的影响。实验小鼠(C57BL/6)随机分配两组,实验组食用高脂饲料,对照组食用正常饲料,喂养110d后,把胃组织分为前胃、胃体和胃窦3个区分别进行蛋白质谱鉴定,随后比较两组实验的蛋白表达谱,分别筛选两组之间的差异蛋白以及胃分区的差异蛋白(差异倍数≥2),并对其进行GO富集及蛋白相互作用网络分析。对照组和实验组共鉴定到9 307种蛋白,筛选特异性肽段≥1且重复实验中至少鉴定到2次的蛋白,最后剩余4 066种蛋白,其中对照组3654种,实验组3832种。进一步从生物功能角度整体分析了胃组织的蛋白表达谱,结果发现实验组小鼠胃组织中高表达蛋白主要参与蛋白稳定和运输等生物学过程。而在对胃分区差异蛋白的功能分析表明,前胃主要参与角质化和肌动蛋白组装相关生物学过程,且受饮食影响程度较小;胃体和胃窦主要执行消化功能,高脂饮食后对胃的基本消化功能并无显著影响,但与对照组相比,参与蛋白转运和脂肪代谢相关生物学过程的蛋白显著高表达。  相似文献   

6.
目的:研究Wistar大鼠单次灌服辛伐他汀后体内药代动力学的性别差异。方法:利用高效液相色谱方法检测大鼠血浆中辛伐他汀浓度,采用非房室模型法计算各自药动学参数。结果:雌、雄大鼠体内Cmax分别为(144.66±22.31)ng·mL~(-1)和(165.91±52.50)ng·mL~(-1);t_(1/2)分别为(4.74±1.19)h和(14.98±6.64)h;AUC_(0-10)分别为(0.990±0.19)μg.h·mL~(-1)和(0.726±0.15)μg·h·mL~(-1);AUC0-∞分别为(1.62±0.47)μg·h·mL~(-1)和(2.19±0.62)μg·h·mL~(-1);MRT分别为(9.69±1.60)h和(23.08±8.89)h,经t-检验,雌、雄大鼠主要药动学参数t_(1/2)、AUC_(0-10)、MRT均有统计学显著性差异(p<0.01)。结论:辛伐他汀在大鼠体内的药代动力学存在明显的性别差异,辛伐他汀在雌性大鼠体内代谢较快。  相似文献   

7.
8.
R Bertin  M Andriamihaja  R Portet 《Biochimie》1984,66(7-8):569-572
Glycerokinase activity was measured in the brown and white adipose tissues compared with that in the liver obese Zucker rats adapted or not adapted to cold. In white adipose tissue total activity was low but higher in the fa/fa rats than in the Fa/ones; cold adaptation did not modify this activity. In brown adipose tissue specific activity was higher than in white; specific activity was twice as high in the fa/fa rats than in the Fa/-. Cold-adaptation induced an increase in the activity in the Fa rats and a decrease in the fa/fa rats. The results are discussed with regard to the cold-induced increase in the energetic efficiency of the tissue.  相似文献   

9.
Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.  相似文献   

10.
11.
Injections of 6-hydroxydopamine in mouse neonates caused extensive and long lasting damage to the sympathetic nervous system and impaired brown fat development. Brown adipose tissue (BAT) thermogenic capacity of sympathectomized mice (up to 120 days old) was reduced because of marked reductions in the tissue mitochondrial protein content and the mitochondrial concentration of uncoupling protein, as assessed by [3H]GDP binding and immunoassay. Neonatal sympathectomy did not affect BAT DNA content. Sympathectomized mice also had reduced epinephrine-stimulated rates of oxygen consumption. BAT of sympathectomized mice failed to respond by increases in [3H]GDP binding to isolated mitochondria and uncoupling protein concentration when animals were offered a palatable high-fat dietary supplement that increased calorie intake of both normal and sympathectomized mice. The high-fat diet caused increases in body weight, carcass fat, and gonadal white fat pad weights in sympathectomized animals that were similar to those of control mice. These results show that inactivation of BAT metabolism did not accentuate the development of obesity caused by a dietary supplement rich in fat and suggest that stimulation of BAT metabolism was not very effective in counteracting the obesity-inducing effect of this diet.  相似文献   

12.
13.
Deficits in satiation signaling during obesogenic feeding have been proposed to play a role in hyperphagia and weight gain in animals prone to become obese. However, whether this impaired signaling is due to high fat (HF) feeding or to their obese phenotype is still unknown. Therefore, in the current study, we examined the effects of CCK-8 (0.5, 1.0, 2.0, and 4.0 μg/kg) on suppression of food intake of HF-fed obese prone (OP) and resistant (OR) rats. Additionally, we determined the role of endogenous CCK in lipid-induced satiation by measuring plasma CCK levels following a lipid gavage, and tested the effect of pretreatment with devazepide, a CCK-1R antagonist on intragastric lipid-induced satiation. Finally, we examined CCK-1R mRNA levels in the nodose ganglia. We show that OP rats have reduced feeding responses to the low doses of exogenous CCK-8 compared to OR rats. Furthermore, OP rats exhibit deficits in endogenous CCK signaling, as pretreatment with devazepide failed to abolish the reduction in food intake following lipid gavage. These effects were associated with reduced plasma CCK after intragastric lipid in OP but not OR rats. Furthermore, HF feeding resulted in downregulation of CCK-1Rs in the nodose ganglia of OP rats. Collectively, these results demonstrate that HF feeding leads to impairments in lipid-induced CCK satiation signaling in obese-prone rats, potentially contributing to hyperphagia and weight gain.  相似文献   

14.
The aim of the present study was to investigate body fat-suppressive effects of green tea in rats fed on a high-fat diet and to determine whether the effect is associated with beta-adrenoceptor activation of thermogenesis in brown adipose tissue. Feeding a high-fat diet containing water extract of green tea at the concentration of 20g/kg diet prevented the increase in body fat gain caused by high-fat diet without affecting energy intake. Energy expenditure was increased by green tea extract which was associated with an increase in protein content of interscapular brown adipose tissue. The simultaneous administration of the beta-adrenoceptor antagonist propranolol(500 mg/kg diet) inhibited the body fat-suppressive effect of green tea extract. Propranolol also prevented the increase in protein content of interscapular brown adipose tissue caused by green tea extract. Digestibility was slightly reduced by green tea extract and this effect was not affected by propranolol. Therefore it appeared that green tea exerts potent body fat-suppressive effects in rats fed on a high-fat diet and the effect was resulted in part from reduction in digestibility and to much greater extent from increase in brown adipose tissue thermogenesis through beta-adrenoceptor activation.  相似文献   

15.
Liu H  Choi JW  Yun JW 《Proteomics》2012,12(2):269-283
Knowledge of gender differences is important because nutritional recommendations on the basis of data collected using predominantly male subjects may not be valid for women. In the present study, we performed proteomic analysis in plasma of rats fed a high-fat diet (HFD) using 2-DE combined with MALDI-TOF-MS for analysis of differential regulation patterns between male and female plasma proteins. Male rats gained more body weight with increased values of biochemical parameters than female rats. Image analysis and further statistical analysis allowed detection and identification of 31 proteins that were significantly modulated in a gender-dependent manner in response to HFD. Those differential expressed proteins were classified into three groups based on their regulation patterns in response to diet and gender. Consequently, we found 13 proteins showing gender-different regulation in both normal diet (ND) and HFD, where 9 proteins showed identical regulation patterns (Group I) and 4 proteins exhibited opposite regulation mode (Group II) between the genders. Eighteen proteins showed no gender-difference but HFD-responsive regulation (Group III). Of these, Apo A-IV, CRP precursor, Hp precursor, and FGG showed a clear gender difference in both ND and HFD, with the same regulation patterns. Present proteomic research into gender-dimorphic protein modulation in plasma would aid in improvement of gender awareness in the health care system and in implementation of evidence-based gender-specific clinical recommendations.  相似文献   

16.
A high-fat diet (HFD) is associated with reduced glucose uptake in muscle, but not in adipose tissue. In the present study, we investigated whether a HFD can modulate glucose uptake in adipose tissue by increasing signal transduction through the CAP/Cbl pathway, independently of the PI3-K/Akt pathway. Our results suggest that, in HFD, the differential regulation of insulin-induced glucose uptake between skeletal muscle and adipose tissue may, in part, be a consequence of the CAP/Cbl/C3G pathway, since the expression of CAP and Cbl, and also the activation of this pathway were increased in adipose tissue but not in muscle.  相似文献   

17.
18.
  1. Download : Download high-res image (130KB)
  2. Download : Download full-size image
  相似文献   

19.
We explored the impact of exposure to an obesogenic diet (High Fat–High Sucrose; HFS) during the post-weaning period on sweet preference and behaviors linked to reward and anxiety. All rats were fed chow. In addition a HFS-transient group had access to this diet for 10 days from post-natal (PN) day 22 and a HFS-continuous group continued access until adult. Behavioral tests were conducted immediately after PN 32 (adolescence) or after PN 60 (adult) and included: the condition place preference (CPP) test for chocolate, sugar and saccharin preference (anhedonia), the elevated plus maze (anxiety-like behavior) and the locomotor response to quinpirole in the open field. Behavior was unaltered in adult rats in the HFS-transient group, suggesting that a short exposure to this obesogenic food does not induce long-term effects in food preferences, reward perception and value of palatable food, anxiety or locomotor activity. Nevertheless, rats that continued to have access to HFS ate less chocolate during CPP training and consumed less saccharin and sucrose when tested in adolescence, effects that were attenuated when these rats became adult. Moreover, behavioral effects linked to transient HFS exposure in adolescence were not sustained if the rats did not remain on that diet until adult. Collectively our data demonstrate that exposure to fat and sucrose in adolescence can induce immediate reward hypofunction after only 10 days on the diet. Moreover, this effect is attenuated when the diet is extended until the adult period, and completely reversed when the HFS diet is removed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号