首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was elucidation of the difference in inhibition influence of 5-hydroxy-1,4-naphthoquinone (juglone) and 2-hydroxy-1,4-naphthoquinone (lawsone) on jack bean urease activity. It was found that juglone acted as a strong, time and concentration dependent inactivator of urease. On the contrary, lawsone showed an inconsiderable inhibition influence. The reactivation of juglone modified urease showed the participation of reversible and irreversible contribution in the inactivation. In the presence of an excess of DTT, urease inactivated by juglone regained 70% of its activity. The reversible inactivation was attributed to oxidation of the essential urease thiols by reactive oxygen species (ROS) realizing during reduction of juglone to seminaphthoquinone. Presence of hydrogen peroxide in the incubation system was proved by direct determination and by application of catalase. The irreversible contribution in the inhibition was assumed as an arylation of urease thiol groups by juglone. The insignificant urease inhibition by lawsone was concluded as an effect of a low hydrogen peroxide generation and lawsone resistance for reaction with protein thiols. It was found that lawsone well reacted with l-cysteine, poorly with glutathione and hardly with urease thiols. The observed sequence was arranged according the rule the more complex thiol the less susceptible for reaction with lawsone. On the other hand, juglone displayed an excellent reactivity towards both thiols and urease. Thus, this indicated a significance of a steric hindrance which appeared when the hydroxyl group changing position from 5 in juglone (5-hydroxy-1,4-naphthoquinone) to 2 in lawsone (2-hydroxy-1,4-naphthoquinone).  相似文献   

2.
In their inhibition-inducing interactions with enzymes, quinones primarily utilize two mechanisms, arylation and oxidation of enzyme thiol groups. In this work, we investigated the interactions of 1,4-naphthoquinone with urease in an effort to estimate the contribution of the two mechanisms in the enzyme inhibition. Jack bean urease, a homohexamer, contains 15 thiols per enzyme subunit, six accessible under non-denaturing conditions, of which Cys592 proximal to the active site indirectly participates in the enzyme catalysis. Unlike by 1,4-benzoquinone, a thiol arylator, the inactivation of urease by 1,4-naphthoquinone under aerobic conditions was found to be biphasic, time- and concentration-dependent with a non-linear residual activity-modified thiols dependence. DTT protection studies and thiol titration with DTNB suggest that thiols are the sites of enzyme interactions with the quinone. The inactivated enzyme had approximately 40% of its activity restored by excess DTT supporting the presence of sulfenic acid resulting from the oxidation of enzyme thiols by ROS. Furthermore, the aerobic inactivation was prevented in approximately 30% by catalase, proving the involvement of hydrogen peroxide in the process. When H2O2 was directly applied to urease, the enzyme showed susceptibility to this inactivation in a time- and concentration-dependent manner with the inhibition constant of H2O2 Ki = 3.24 mM. Additionally, anaerobic inactivation of urease was performed and was found to be weaker than aerobic. The results obtained are consistent with a double mode of 1,4-naphthoquinone inhibitory action on urease, namely through the arylation of the enzyme thiol groups and ROS generation, notably H2O2, resulting in the oxidation of the groups.  相似文献   

3.
The inhibition of urease by heavy metal ions has been habitually ascribed to the reaction of the ions with enzyme thiol groups, resulting in the formation of mercaptides. To probe the modes of metal binding to the enzyme, in this work the reaction of mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions with jack bean urease was studied. The enzyme was reacted with different concentrations of the metal ions for different periods of times, when its residual activity was assayed and thiol content titrated. The titration carried out with DTNB was done to examine the involvement of urease thiol groups in metal ion binding. The binding was further probed by reactivation of the metal ion-enzyme complexes with DTT, EDTA and dilution. The results are discussed in terms of the HSAB concept. In inhibiting urease the metal ions showed a common feature in that they inhibited the enzyme within a comparable micromolar range, and also in that their inhibition was multisite. By contrast, the main distinguishing feature in their action consisted of the involvement of enzyme thiol groups in the reaction. Hg (2+) and Hg2(2+) inhibition was found thoroughly governed by the reaction with the enzyme thiols, and the complete loss of enzyme activity involved all thiols available in the enzyme under non-denaturating conditions. In contrast, Ag+ and Cu2+ ions for the complete inactivation of the enzyme required 53 and 60% of thiols, respectively. Accordingly, Ag+ and Cu2+ binding to functional groups in urease other than thiols, i.e. N- and O-containing groups, cannot be excluded. Based on the reactivation experiments this seems particularly likely for Cu2+, whose concurrent binding to thiols and other groups might distort the architecture of the active site (the mechanism of which remains to be elucidated) resulting in the observed inhibitory effects.  相似文献   

4.
Synthetic chalcones (SCs) having different side chains on the 1-(2-Hydroxy-3-(2-hydroxy-cyclohexyl)-4,6 dimethoxy-phenyl(-methanone structure were examined in-vitro for their antioxidant abilities by DPPH (2,2-diphenyl-1-picryl hydrazine) radical scavenging activity, reducing ability, OH radical scavenging activity, inhibition of polyphenol oxidase (PPO) and formation of diene conjugates. Overall, with few exceptions, all the SCs showed moderate biological activity in all the parameters examined. The SCs were found to be reactive towards DPPH radical and had considerable reducing ability. With few exceptions, all the test compounds under study were found to possess moderate to poor OH radical scavenging activity and inhibited PPO significantly and all were found to be effective inhibitors of hydroperoxide formation. These findings suggest that these SCs can be considered as potential antioxidant agents which might be further explored for the design of lead antioxidant drug candidates.  相似文献   

5.
Synthetic chalcones (SCs) having different side chains on the 1-(2-Hydroxy-3-(2-hydroxy-cyclohexyl)-4,6 dimethoxy-phenyl(-methanone structure were examined in-vitro for their antioxidant abilities by DPPH (2,2-diphenyl-1-picryl hydrazine) radical scavenging activity, reducing ability, OH radical scavenging activity, inhibition of polyphenol oxidase (PPO) and formation of diene conjugates. Overall, with few exceptions, all the SCs showed moderate biological activity in all the parameters examined. The SCs were found to be reactive towards DPPH radical and had considerable reducing ability. With few exceptions, all the test compounds under study were found to possess moderate to poor OH radical scavenging activity and inhibited PPO significantly and all were found to be effective inhibitors of hydroperoxide formation. These findings suggest that these SCs can be considered as potential antioxidant agents which might be further explored for the design of lead antioxidant drug candidates.  相似文献   

6.
The methanolic extract of Musa ABB cv Pisang Awak was investigated for the polyphenolic contents and antioxidant activity. The total phenol and flavonoid contents of the fruit extract were found to be 120 mg gallic acid equivalents (GAE) and 440 mg quercetin equivalents (QE)/100 g of sample dry weight, respectively. The antioxidant activity of the Pisang Awak methanol extract (PAME) (20-500 microg/ml) was determined using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, reducing capacity, 2-2'-azinobis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS) radical cation decolourization and hydroxyl radical scavenging capacity (OH*). The EC50 values of DPPH, ABTS and OH* activities of the PAME and butylated hydroxy toluene (BHT) were found to be 65 and 9 microg/ml, 29 and 6 microg/ml, 36 and 42 microg/ml respectively. The reducing capacity increased with increasing concentration (31.5-1000 mg/ml) of the fruit extract and the activity was comparable with the standard BHT. The high performance thin layer chromatography (HPTLC) analysis of the extract revealed the presence of polyphenols. The strong and positive correlations were obtained between total phenol/flavonoid contents (R2 = 0.693-1.0) and free radical scavenging ability was attributed to the polyphenols as the major antioxidants.  相似文献   

7.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH(.)) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ - Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 microg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH(.) scavenging, ABTS(.)+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+-Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

8.
The mechanism of inactivation of a double-stranded DNA phage, phage J1 of Lactobacilluscasei, by reducing agents containing thiol group(s) other than glutathione was studied mainly with dithiothreitol (DTT).

Air bubbling, oxidizing agents, and transition metal ions enhanced the rate of phage inactivation by DTT. Partial oxidation of DTT resulted in a more rapid rate of phage inactivation. In contrast, nitrogen bubbling, reducing agents including high concentrations of DTT itself, chelating agents, and radical scavengers prevented phage inactivation. Fully oxidized DTT had no phagocidal effect. These results indicate that the inactivating effect of DTT requires the presence of molecular oxygen and is indirectly caused by free radicals involved in the mechanism of DTT oxidation. The target attacked by DTT in phage particle was not protein but DNA; DTT reacted with DNA to produce single-strand scissions in DNA, which were the cause of inactivation of phage.

This was true also for L-cysteine, 2-mercaptoethanol, and thioglycollate.

Possible mechanisms by which these thiols fail to inactivate phage at high thiol concentrations are also discussed.  相似文献   

9.
N-Ethylmaleimide (NEM) was studied as an inactivator of jack bean urease at 25 degrees C in 20 mM phosphate buffer, pHs 6.4, 7.4, and 8.3. The inactivation was investigated by incubation procedure in the absence of a substrate. It was found that NEM acted as a time and concentration dependent inactivator of urease. The dependence of urease residual activity on the incubation time showed that the activity decreased with time until the total loss of enzyme activity. The process followed a pseudo-first-order reaction. A monophasic loss of enzyme activity was observed at pH 7.4 and 8.4, while a biphasic reaction occurred at pH 6.4. Moreover, the alkaline pH promoted the inactivation. The presence of thiol-compounds, such as L-cysteine, glutathione or dithiothreitol (DTT), in the incubation mixture significantly slowed down the rate of inactivation. The interaction test showed that the decrease of inactivation was an effect of NEM-thiol interaction that lowered NEM concentration in the incubation mixture. The reactivation of NEM-blocked urease by DTT application and multidilution did not result in an effective activity regain. The applied DTT reacted with the remaining inactivator and could stop the progress of enzyme activity loss but did not cause the reactivation. This confirmed the irreversibility of inactivation. Similar results obtained at pH 6.4, 7.4 and 8.4 indicated that the mechanism of urease inactivation by NEM was pH-independent. However, the pH value significantly influenced the process rate.  相似文献   

10.
为了解湘西特色食品“蒿菜粑粑”原料植物鼠麴草(Gnaphalium affine)总黄酮提取物体外抗氧化能力,采用DPPH、ABTS自由基清除实验,还原力实验和抑制β-胡萝卜素褪色实验等方法,测定鼠麴草总黄酮抗氧化活性。结果显示,鼠麴草总黄酮母液中总黄酮浓度为7.01 mg·mL–1mg/mL;总黄酮提取物对DPPH、ABTS自由基有较好的清除能力,其半数抑制浓度(IC50)分别为16.30 mg·L–1、30.16 mg·L–1,将胡萝卜素相对吸光度降为50%的时间延长至67.49 min,在还原能力、延缓胡萝卜素褪色和抑制脂质过氧化上也有较好效果。鼠麴草总黄酮提取物具有良好的体外抗氧化活性,可作为优质食用植物资源进一步开发与推广。  相似文献   

11.
水麻果多酚的提取纯化及其抗氧化、抗肿瘤活性作用   总被引:2,自引:0,他引:2  
为提取分离水麻果多酚,探索水麻果多酚的抗氧化及抗肿瘤能力。本研究通过单因素试验和正交试验优化水麻果多酚超声提取工艺,使用大孔树脂纯化水麻果多酚,通过测定水麻果多酚的总还原力以及清除·OH、DPPH·、ABTS·的能力来表征其抗氧化活性,以宫颈癌Hela细胞和肺癌A549细胞为抗肿瘤研究对象,测定水麻果多酚的抗肿瘤作用。在最优超声提取工艺条件下,即乙醇浓度为60%,料液比为1∶30,超声功率200 W,超声温度为70℃,提取时间为40 min,水麻果多酚得率为3. 29%,纯化产物总酚含量为40. 47 mg/100 mg,水麻果多酚的总还原力与维生素C相当,对·OH、DPPH·、ABTS·均具有显著清除作用,可抑制Hela细胞和A549细胞的生长增殖,并导致癌细胞产生大量活性氧,出现凋亡形态特征。该提取工艺简单、高效且多酚得率高,提取物经大孔树脂纯化后总多酚含量显著提高,且具有显著的抗氧化和抗肿瘤活性。  相似文献   

12.
N-Ethylmaleimide (NEM) was studied as an inactivator of jack bean urease at 25 °C in 20 mM phosphate buffer, pHs 6.4, 7.4, and 8.3. The inactivation was investigated by incubation procedure in the absence of a substrate. It was found that NEM acted as a time and concentration dependent inactivator of urease. The dependence of urease residual activity on the incubation time showed that the activity decreased with time until the total loss of enzyme activity. The process followed a pseudo-first-order reaction. A monophasic loss of enzyme activity was observed at pH 7.4 and 8.4, while a biphasic reaction occurred at pH 6.4. Moreover, the alkaline pH promoted the inactivation. The presence of thiol-compounds, such as L-cysteine, glutathione or dithiothreitol (DTT), in the incubation mixture significantly slowed down the rate of inactivation. The interaction test showed that the decrease of inactivation was an effect of NEM-thiol interaction that lowered NEM concentration in the incubation mixture. The reactivation of NEM-blocked urease by DTT application and multidilution did not result in an effective activity regain. The applied DTT reacted with the remaining inactivator and could stop the progress of enzyme activity loss but did not cause the reactivation. This confirmed the irreversibility of inactivation. Similar results obtained at pH 6.4, 7.4 and 8.4 indicated that the mechanism of urease inactivation by NEM was pH-independent. However, the pH value significantly influenced the process rate.  相似文献   

13.
The methanolic extract of the aerial part of Hedyotis corymbosa (L.) Lam. (Rubiaceae) was screened for antioxidant activity using 1,1-diphenyl-2-picryl hydroxyl (DPPH) quenching assay, 2,2'-azinobis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS) cation decolorization test, ferric reducing power (FRP), scavenging capacity towards hydroxyl ion (OH*) radicals and nitric oxide (NO) radical inhibition activity using established assay procedures. Total phenolics and total flavonoid contents were, also determined. The plant yielded 210 mg gallic acid equivalent/100 g phenolic content and 55 mg quercetin equivalent/100 g flavonoid content. The extract exhibited high antiradical activity against DPPH, ABTS, nitric oxide and hydroxyl radicals with EC50 value of 82, 150, 130, and 170 microg/ml, respectively. The FRP increased with increasing concentration of the sample. The antioxidant activity of the extract was comparable with that of the standard butylated hydroxyl toluene (BHT). High correlation between total phenolic/flavonoid contents and scavenging potential of different reactive oxygen species (R2 = 0.785-0.998) indicated the polyphenols as the main antioxidants.  相似文献   

14.
HDL-associated paraoxonase 1 (PON1) undergoes inactivation under oxidative stress and is preserved by dietary antioxidants. PON1 cysteines can affect PON1 enzymatic activities. S-Glutathionylation, a redox regulatory mechanism characterized by the formation of a mixed disulfide between a protein thiol and oxidized glutathione (GSSG), was shown to preserve some enzymes from irreversible inactivation under pathological conditions. We questioned whether PON1 activity is regulated by S-glutathionylation. Incubation of PON1 or HDL with GSSG indeed resulted in a dose-dependent inactivation of PON1 activities, including its physiological activity to increase HDL-mediated macrophage cholesterol efflux. This PON1 inactivation was associated with the formation of a mixed disulfide bond between GSSG and PON1's cysteine residue(s), as detected by immunoblotting with anti-glutathione IgG. PON1 activity was recovered following the addition of a reducing agent, DL-Dithiothreitol (DTT), to the PON1-SSG complex. We thus conclude that HDL-associated serum PON1 can undergo S-glutathionylation under oxidative stress with a consequent reversible inactivation.  相似文献   

15.
The ethanolic extract derived from aerial parts of an indigenous medicinal plant Paeonia emodi was screened for enzyme inhibition activities against Urease (jack bean and Bacillus pasteurii) and alpha-Chymotrypsin. The extract was also investigated for its radical scavenging activity using DPPH assay. The crude extract was found to possess significant enzyme inhibition activities against jack bean (74%) and Bacillus pasteurii (80%) urease and a moderate activity (54%) against alpha-Chymotrypsin. The extract also displayed excellent (83%) radical scavenging activity. On the basis of these results, the crude extract was subsequently fractionated into n-hexane, chloroform, ethyl acetate, n-butanol and water fractions and tested independently for the aforesaid activities. Significant inhibitory activity against urease enzyme was observed for the ethyl acetate, n-butanol and water fractions while the n-hexane and chloroform fractions were devoid of any such activity. In the alpha-Chymotrypsin enzyme inhibition studies the activity was concentrated into the ethyl acetate fraction. All the fractions displayed potent radical scavenging activity. The crude extract and fractions thereof were also subjected to total phenolic content determination. A correlation between radical scavenging capacities of extracts and total phenolic content was observed in the majority of cases.  相似文献   

16.
A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.  相似文献   

17.
The ethanolic extract derived from aerial parts of an indigenous medicinal plant Paeonia emodi was screened for enzyme inhibition activities against Urease (jack bean and Bacillus pasteurii) and α-Chymotrypsin. The extract was also investigated for its radical scavenging activity using DPPH assay. The crude extract was found to possess significant enzyme inhibition activities against jack bean (74%) and Bacillus pasteurii (80%) urease and a moderate activity (54%) against α-Chymotrypsin. The extract also displayed excellent (83%) radical scavenging activity. On the basis of these results, the crude extract was subsequently fractionated into n-hexane, chloroform, ethyl acetate, n-butanol and water fractions and tested independently for the aforesaid activities. Significant inhibitory activity against urease enzyme was observed for the ethyl acetate, n-butanol and water fractions while the n-hexane and chloroform fractions were devoid of any such activity. In the α-Chymotrypsin enzyme inhibition studies the activity was concentrated into the ethyl acetate fraction. All the fractions displayed potent radical scavenging activity. The crude extract and fractions thereof were also subjected to total phenolic content determination. A correlation between radical scavenging capacities of extracts and total phenolic content was observed in the majority of cases.  相似文献   

18.
比较了冬虫夏草Cordyceps sinensis、古尼虫草Cordyceps gunnii、蛹虫草Cordyceps militaris、黑柄炭角菌Xylaria nigripes等四种子囊菌提取物的抗氧化活性,对它们的子实体(F)和菌丝体(M)甲醇提取物清除DPPH自由基能力、还原力、金属离子鳌合能力和总酚含量进行了测定,结果显示四种子囊菌子实体的自由基清除能力、还原力和总酚含量均高于其菌丝体(P0.05),但四种子囊菌子实体的DPPH清除能力不存在显著差异(P0.05);古尼虫草和蛹虫草子实体的还原力和总酚含量显著高于冬虫夏草和黑柄炭角菌子实体(P0.05),但前两者之间不存在显著差异(P0.05)。总酚含量和DPPH自由基清除能力、还原力呈正相关。  相似文献   

19.
This study is designed to examine the chemical composition and in vitro antioxidant activity of the essential oil and sub-fractions of the methanol extract of Marrubium globosum subsp. globosum. The GC and GC-MS analysis of the essential oil were resulted in the determination of 84 components representing 88.2% of the oil. The major constituents of the oil were spathulenol (15.8%), beta-caryophyllene (9.0%), caryophyllene oxide (7.9%), germacrene D (6.5%), and bicyclogermacrene (3.1%). Antioxidant activities of the samples were determined by three different test systems namely DPPH, beta-carotene/linoleic acid and reducing power assay. In DPPH system, the weakest radical scavenging activity was exhibited by the essential oil (1203.38+/-7.18 microg ml(-1)). Antioxidant activity of the polar sub-fraction of methanol extract was superior to the all samples tested with an EC(50) value of 157.26+/-1.12 microg ml(-1). In the second case, the inhibition capacity (%) of the polar sub-fraction of methanol extract (97.39%+/-0.84) was found the strongest one, which is almost equal to the inhibition capacity of positive control BHT (97.44%+/-0.74). In the case of reducing power assay, a similar activity pattern was observed as given in the first two systems. Polar sub-fraction was the strongest radical reducer when compared with the non-polar one, with an EC(50) value of 625.63+/-1.02 microg ml(-1). The amount of the total phenolics was highest in polar sub-fraction (25.60+/-0.74 microg/mg). A positive correlation was observed between the antioxidant activity potential and total phenolic level of the extracts. On the other hand, total flavonoid content was found equal for the both sub-fractions.  相似文献   

20.
Antioxidant and radical scavenging properties of curcumin   总被引:3,自引:0,他引:3  
Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号