首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased expression of the ubiquitous serine/threonine protein kinase CK2 has been associated with increased proliferative capacity and increased resistance towards apoptosis. Taurine is the primary organic osmolyte involved in cell volume control in mammalian cells, and shift in cell volume is a critical step in cell proliferation, differentiation and induction of apoptosis. In the present study, we use mouse NIH3T3 fibroblasts and Ehrlich Lettré ascites tumour cells with different CK2 expression levels. Taurine uptake via the Na+ dependent transporter TauT and taurine release are increased and reduced, respectively, following pharmacological CK2 inhibition. The effect of CK2 inhibition on TauT involves modulation of transport kinetics, whereas the effect on the taurine release pathway involves reduction in the open-probability of the efflux pathway. Stimulation of PLA2 activity, exposure to exogenous reactive oxygen species as well as inhibition of protein tyrosine phosphotases (PTP) potentiate the swelling-induced taurine loss. Inhibition of PI3K and PTEN reduces and potentiates swelling-induced taurine release, respectively. Inhibition of CK2 has no effect on PLA2 activity and ROS production by NADPH oxidase, whereas it lifts the effect of PTEN and PTP inhibition. It is suggested that CK2 regulates the taurine release downstream to known swelling-induced signal transducers including PLA2, NADPH oxidase and PI3K.  相似文献   

2.
Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.  相似文献   

3.
Protein kinase CK2 is a highly conserved, pleiotropic, protein serine/threonine kinase that is essential for life in eukaryotes. CK2 has been implicated in diverse cellular processes such as cell cycle regulation, circadian rhythms, apoptosis, transformation and tumorigenesis. In addition, there is increasing evidence that CK2 is involved in the maintenance of cell morphology and cell polarity, and in the regulation of the actin and tubulin cytoskeletons. Accordingly, this review will highlight published evidence in experimental models ranging from yeast to mammals documenting the emerging roles of protein kinase CK2 in the regulation of cell polarity, cell morphology and the cytoskeleton.  相似文献   

4.
Protein kinase CK2 has long been known to be involved in cell growth and proliferation. Recent work has also implicated its role in the suppression of apoptosis. We originally documented that removal of survival or growth stimuli resulted in rapid loss of CK2 from the nuclear matrix and chromatin which preceded induction of apoptosis. Further, we demonstrated that overexpression of CK2 in cells promotes suppression of drug-mediated apoptosis. In the present work, we have extended these observations to demonstrate that CK2 can influence apoptosis mediated via the death receptors. Overexpression of CK2 resulted in suppression of apoptosis mediated by TNF-α, TRAIL, and Fas-L in cells responsive to these ligands, whereas downregulation of CK2 resulted in augmentation of apoptosis mediated by these ligands. To our knowledge, this is the first report to show that receptor-mediated apoptosis can be modulated by changes in CK2 in prostate cancer cells. Based on our previous observations together with the evidence presented here, we propose that CK2 has an impact on the process of apoptosis mediated by diverse type of mechanisms thus playing a global role in regulation of apoptotic activity in cells.  相似文献   

5.
Taurine, an important mediator of cellular volume regulation in the central nervous system, is accumulated into neurons and glia by means of a highly specific sodium-dependent membrane transporter. During hyperosmotic cell shrinkage, net cellular taurine content increases as taurine transporter activity is enhanced via elevated gene expression of the transporter protein. In hypo-osmotic conditions, taurine is rapidly lost from cells by means of taurine-conducting membrane channels. We reasoned that changes in taurine transporter activity also might accompany cell swelling to minimize re-accumulation of taurine from the extracellular space. Thus, we determined the kinetic and pharmacological characteristics of neuronal taurine transport and the response to osmotic swelling. Accumulation of radioactive taurine is strongly temperature dependent and occurs via saturable and non-saturable pathways. At concentrations of taurine expected in extracellular fluid in vivo, 98% of taurine accumulation would occur via the saturable pathway. This pathway obeys Michaelis-Menten kinetics with a Km of 30.0 +/- 8.8 microm (mean +/- SE) and Jmax of 2.1 +/- 0.2 nmol/mg protein min. The saturable pathway is dependent on extracellular sodium with an effective binding constant of 80.0 +/- 3.1 mm and a Hill coefficient of 2.1 +/- 0.1. This pathway is inhibited by structural analogues of taurine and by the anion channel inhibitors, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and 5-nitro-2-(3 phenylpropylamino) benzoic acid (NPPB). NPPB, but not DIDS, also reduces the ATP content of the cell cultures. Osmotic swelling at constant extracellular sodium concentration reduces the Jmax of the saturable transport pathway by approximately 48%, increases Kdiff for the non-saturable pathway by 77%, but has no effect on cellular ATP content. These changes in taurine transport occurring in swollen neurons in vivo would contribute to net reduction of taurine content and resulting volume regulation.  相似文献   

6.
A review of the cell volume regulation mechanism in heart ventricles of teleosts reveal that the mechanism is not only restricted to euryhaline species in a changing salinity regime but also is manifested in fresh-water fish. Taurine is the dominating amino acid and the main cellular osmo-effector in teleost hearts (accounting for 40-50% of the osmolality change). During hypo-osmotic regulation, cellular taurine is reduced by an efflux from the cells, whereas intracellular synthesis of taurine most probably accompanies hyper-osmotic regulation. Vertebrate hearts seem to have a high concentration of taurine and it may in general in vertebrate hearts also play a pivotal role in cellular osmoregulatory function.  相似文献   

7.
Taurine, present in high concentrations in various mammalian cells, is essential for regulation of cell volume, cellular oxidative status as well as the cellular Ca2+ homeostasis. Cellular taurine content is a balance between active uptake through the saturable, Na(+)-dependent taurine transporter TauT, and passive release via a volume-sensitive leak pathway. Here we demonstrate that: (i) TauT localizes to the primary cilium of growth-arrested NIH3T3 fibroblasts, (ii) long-term exposure to TNF(alpha) or hypertonic sucrose medium, i.e., growth medium supplemented with 100 mM sucrose, increases ciliary TauT expression and (iii) long-term exposure to hypertonic taurine medium, i.e., growth medium supplemented with 100 mM taurine, reduces ciliary TauT expression. These results point to an important role of taurine in the regulation of physiological processes located to the primary cilium.  相似文献   

8.
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.  相似文献   

9.
Protein phosphorylation is a key regulatory post-translational modification and is involved in the control of many cellular processes. Protein kinase CK2, formerly known as casein kinase II, which is a ubiquitous and highly conserved protein serine/threonine kinase, plays a central role in the control of a variety of pathways in cell proliferation, transformation, apoptosis and senescence. An understanding of the regulation of such a central protein kinase would greatly help our comprehension of the regulation of many pathways in cellular regulation. A number of reviews have addressed the detection, the development, and the characterization of inhibitors of CK2. The present review focuses on possible natural regulators of CK2, i.e. proteins and other cellular factors that bind to CK2 and thereby regulate its activity.  相似文献   

10.
Protein kinase CK2 (formerly casein kinase II) is a tetrameric enzyme constitutively expressed in all eurakyotic tissues that plays a significant role in the regulation of cell proliferation, malignant transformation, and apoptosis. The catalytic alpha-subunit of the enzyme is known to exist in three isoforms CK2alpha, CK2alpha' and CK2alpha". CK2alpha" is highly expressed in liver compared with other tissues and is required for the normal trafficking of several hepatocellular membrane proteins. Initial studies of dengue virus infection indicated that the CK2alpha"-deficient membrane trafficking mutant cell line (Trf1) was resistant to virus-induced cell death compared with the parental human hepatoma (HuH)-7 hepatoma line. Expression of recombinant CK2alpha" in Trf1 was capable of reverting this resistant phenotype. This study was extended to TNF-alpha in addition to other stimuli of cell death in an attempt to uncover common death pathways that might be modulated by CK2alpha". Evaluation of different pathways involved in death signaling suggest that the regulation of a critical proapoptotic step in HuH-7 cells by CK2alpha" is mediated by a JNK signaling cascade.  相似文献   

11.
Gadd45 genes have been implicated in stress signaling in response to physiological or environmental stressors, which results in cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated implies that Gadd45 proteins function as stress sensors is mediated by a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. What deterministic factors dictate whether Gadd45 and partner proteins function in either cell survival or apoptosis remains to be determined. An attractive working model to consider is that the extent of cellular/DNA damage, in a given cell type, dictates the association of different Gadd45 proteins with particular partner proteins, which determines the outcome.  相似文献   

12.
Signal transduction and cellular radiation responses   总被引:13,自引:0,他引:13  
  相似文献   

13.
14.
Lee SW  Song YS  Lee SY  Yoon YG  Lee SH  Park BS  Yun I  Choi H  Kim K  Chung WT  Yoo YH 《PloS one》2011,6(4):e19163
Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF)-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA) model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence versus a cause of the degeneration in vivo.  相似文献   

15.
Studies of cell signal transduction have predominantly focused on regulation of protein function by phosphorylation. However, recent efforts have begun to uncover another layer of regulation mediated by direct oxidation of cysteine residues in signaling proteins. Typically induced during signaling responses accompanied by generation of reactive oxygen species, these thiol modifications have a variety of functional consequences for target proteins. Using specific signaling protein targets as examples, we discuss how thiol oxidation generally activates pro-apoptotic signaling pathways while inhibiting pathways that promote cell survival. We propose a model in which thiol oxidation acts to control the equilibrium between survival and apoptosis, fine tuning cellular responses that play a central role in the apoptotic decision-making process. We identify areas of focus for future work, including a better understanding of specificity in thiol oxidation events, and a critical need for approaches to examine these modifications under physiologically relevant signaling conditions.  相似文献   

16.
Poly(ADP-ribosyl)ation (PARylation) is a reversible protein modification carried out by the concerted actions of poly(ADP-ribose) polymerase (PARP) enzymes and poly(ADP-ribose) (PAR) decomposing enzymes such as PAR glycohydrolase (PARG) and ADP-ribosyl hydrolase 3 (ARH3). Reversible PARylation is a pleiotropic regulator of various cellular functions but uncontrolled PARP activation may also lead to cell death. The cellular demise pathway mediated by PARylation in oxidatively stressed cells has been described almost thirty years ago. However, the underlying molecular mechanisms have only begun to emerge relatively recently. PARylation has been implicated in necroptosis, autophagic cell death but its role in extrinsic and intrinsic apoptosis appears to be less predominant and depends largely on the cellular model used. Currently, three major pathways have been made responsible for PARP-mediated necroptotic cell death: (1) compromised cellular energetics mainly due to depletion of NAD, the substrate of PARPs; (2) PAR mediated translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus (parthanatos) and (3) a mostly elusive crosstalk between PARylation and cell death/survival kinases and phosphatases. Here we review how these PARP-mediated necroptotic pathways are intertwined, how PARylation may contribute to extrinsic and intrinsic apoptosis and discuss recent developments on the role of PARylation in autophagy and autophagic cell death.  相似文献   

17.
Protein kinase CK2 (formerly known as casein kinase 2) was among the first protein kinases to be identified and characterized. Surprisingly, in spite of intense efforts, the regulation and cellular functions of CK2 remain obscure. However, recent data on its molecular structure, its signal-mediated intracellular dynamic localization and its unexpected function in cell survival have raised new interest in this enzyme. These studies reveal unique features of CK2 and highlight its importance in the transduction of survival signals.  相似文献   

18.
Consequences of CK2 signaling to the nuclear matrix   总被引:2,自引:0,他引:2  
Protein kinase CK2 is recognized as one of the key cellular signals for cell growth and proliferation. Its nuclear targeting appears to be critical to its role in these functions. In the nucleus, nuclear matrix (NM) which plays a major role in growth-related activities is a primary locus for CK2 signaling. A variety of growth stimuli evoke a rapid translocation of the CK2 to the NM whereas removal of these factors has the opposite effect. These studies, employing various experimental models of cell growth (involving different growth-stimulatory factors), have suggested that rapid shuttling of CK2 to the NM is a key feature of early growth control. By contrast, removal of growth-stimulatory factors leading to the loss of cell viability is associated with early loss of CK2 from the NM (and chromatin). This indicates that absence of CK2 from the nuclear compartment is contributory to induction of cell death via apoptosis, implying a protective role for CK2 against cell death. Here, we review the evidence that suggests that CK2 signaling in the NM is not only involved in cell growth but also in cell survival.  相似文献   

19.
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.  相似文献   

20.
Order or chaos? An evaluation of the regulation of protein kinase CK2.   总被引:18,自引:0,他引:18  
CK2 is a highly conserved, ubiquitously expressed protein serine/threonine kinase present in all eukaryotes. Circumscribed as having a vast array of substrates located in a number of cellular compartments, CK2 has been implicated in critical cellular processes such as proliferation, apoptosis, differentiation, and transformation. Despite advances in elucidating its substrates and involvement in cellular regulation, its precise mode of regulation remains poorly defined. In this respect, there are currently conflicting views as to whether CK2 is constitutively active or modulated in response to specific stimuli. Perhaps an important consideration in resolving these apparent discrepancies is recognition of the existence of many discrete CK2 subpopulations that are distinguished from one another by localization or association with distinct cellular components. The existence of these subpopulations brings to light the possibility of each population being regulated independently rather than the entire cellular CK2 content being regulated globally. Logically, each local population may then be regulated in a distinct manner to carry out its precise function(s). This review will examine those mechanisms including regulated expression and assembly of CK2 subunits, phosphorylation of CK2, and interactions with small molecules or cellular proteins that could contribute to the local regulation of distinct CK2 populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号