首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kv1.3 channel has been widely demonstrated to play crucial roles in the activation and proliferation of T cells, which suggests that selective blockers could serve as potential therapeutics for autoimmune diseases mediated by T cells. We previously described that the toxin mimic FS48 from salivary gland of Xenopsylla cheopis downregulates the secretion of proinflammatory factors by Raw 264.7 cells by blocking the Kv1.3 channel and the subsequent inactivation of the proinflammatory MAPK/NF-κB pathways. However, the effects of FS48 on human T cells and autoimmune diseases are unclear. Here, we described its immunomodulatory effects on human T cells derived from suppression of Kv1.3 channel. Kv1.3 currents in Jurkat T cells were recorded by whole-cell patch-clamp, and Ca2+ influx, cell proliferation, and TNF-α and IL-2 secretion were measured using Fluo-4, CCK-8, and ELISA assays, respectively. The in vivo immunosuppressive activity of FS48 was evaluated with a rat DTH model. We found that FS48 reduced Kv1.3 currents in Jurkat T cells in a concentration-dependent manner with an IC50 value of about 1.42 μM. FS48 also significantly suppressed Kv1.3 protein expression, Ca2+ influx, MAPK/NF-κB/NFATc1 pathway activation, and TNF-α and IL-2 production in activated Jurkat T cells. Finally, we show that FS48 relieved the DTH response in rats. We therefore conclude that FS48 can block the Kv1.3 channel and inhibit human T cell activation, which most likely contributes to its immunomodulatory actions and highlights the great potential of this evolutionary-guided peptide as a drug template in future studies.  相似文献   

2.
Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A) with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing.  相似文献   

3.
Voltage-gated K+ channels belonging to Kv1-9 subfamilies are widely expressed in excitable cells where they play an essential role in membrane hyperpolarization during an action potential and in the propagation of action potentials along the plasma membrane. Early patch clamp studies on epithelial cells revealed the presence of K+ currents with biophysical and pharmacologic properties characteristic of Kv channels expressed in excitable cells. More recently, molecular approaches including PCR and the availability of more selective antibodies directed against Kv alpha and auxiliary subunits, have demonstrated that epithelial cells from various organ systems, express a remarkable diversity Kv channel subunits. Unlike neurons and myocytes however, epithelial cells do not typically generate action potentials or exhibit dynamic changes in membrane potential necessary for activation of Kv alpha subunits. Moreover, the fact that many Kv channels expressed in epithelial cells exhibit inactivation suggest that their activities are relatively transient, making it difficult to ascribe a functional role for these channels in transepithelial electrolyte or nutrient transport. Other proposed functions have included (i) cell migration and wound healing, (ii) cell proliferation and cancer, (iii) apoptosis and (iv) O2 sensing. Certain Kv channels, particularly Kv1 and Kv2 subfamily members, have been shown to be involved in the proliferation of prostate, colon, lung and breast carcinomas. In some instances, a significant increase in Kv channel expression has been correlated with tumorogenesis suggesting the possibility of using these proteins as markers for transformation and perhaps reducing the rate of tumor growth by selectively inhibiting their functional activity.  相似文献   

4.
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase that acts as a negative regulator in the efficacy of cytarabine treatment against acute myeloid leukemia (AML). However, the role of SAMHD1 in AML development and progression remains unknown. We have reported that SAMHD1 knockout (KO) in the AML-derived THP-1 cells results in enhanced proliferation and reduced apoptosis, but the underlying mechanisms are unclear. Here we show that SAMHD1 KO in THP-1 cells increased PI3K activity and reduced expression of the tumor suppressor PTEN. Pharmacological inhibition of PI3K activity reduced cell proliferation specifically in SAMHD1 KO cells, suggesting that SAMHD1 KO-induced cell proliferation is mediated via enhanced PI3K signaling. However, PI3K inhibition did not significantly affect SAMHD1 KO-reduced apoptosis, implicating the involvement of additional mechanisms. SAMHD1 KO also led to enhanced phosphorylation of p27 at residue T157 and its mis-localization to the cytoplasm. Inhibition of PI3K activity reversed these effects, indicating that SAMHD1 KO-induced changes in p27 phosphorylation and localization is mediated via PI3K-Akt signaling. While SAMHD1 KO significantly enhanced THP-1 cell migration in vitro, SAMHD1 KO attenuated the ability of THP-1 cells to form subcutaneous tumors in xenografted immunodeficient mice. This effect correlated with significantly increased expression of tumor necrosis factor α (TNF-α) in tumors, which may suggest that TNF-α-mediated inflammation could account for the decreased tumorigenicity in vivo. Our findings implicate that SAMHD1 can regulate AML cell proliferation via modulation of the PI3K-Akt-p27 signaling axis, and that SAMHD1 may affect tumorigenicity by downregulating inflammation.  相似文献   

5.
The human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) has an essential role in cardiac action potential repolarization. Electrical dysfunction of the voltage-sensitive ion channel is associated with potentially lethal ventricular arrhythmias in humans. hERG K+ channels are also expressed in a variety of cancer cells where they control cell proliferation and apoptosis. In this review, we discuss molecular mechanisms of hERG-associated cell cycle regulation and cell death. In addition, the significance of hERG K+ channels as future drug target in anticancer therapy is highlighted.  相似文献   

6.
7.
The localization of ion channels to specific membrane microdomains can impact the functional properties of channels and their role in cellular physiology. We determined the membrane localization of human Kv11.1 (hERG1) alpha-subunit protein, which underlies the rapidly activating, delayed rectifier K(+) current (I(Kr)) in the heart. Immunocytochemistry and membrane fractionation using discontinuous sucrose density gradients of adult canine ventricular tissue showed that Kv11.1 channel protein localized to both the cell surface and T-tubular sarcolemma. Furthermore, density gradient membrane fractionation using detergent (Triton X-100) and non-detergent (OptiPrep) methods from canine ventricular myocytes or HEK293 cells demonstrated that Kv11.1 protein, along with MiRP1 and Kv7.1 (KCNQ1) proteins, localize in cholesterol and sphingolipid enriched membrane fractions. In HEK293 cells, Kv11.1 channels, but not long QT-associated mutant G601S-Kv11.1 channels, also localized to cholesterol and sphingolipid enriched membrane fractions. Depletion of membrane cholesterol from HEK293 cells expressing Kv11.1 channels using methyl-beta-cyclodextrin (MbetaCD) caused a positive shift of the voltage dependence of activation and an acceleration of deactivation kinetics of Kv11.1 current (I(Kv11.1)). Cholesterol loading of HEK293 cells reduced the steep voltage dependence of I(Kv11.1) activation and accelerated the inactivation kinetics of I(Kv11.1). Incubation of neonatal mouse myocytes in MbetaCD also accelerated the deactivation kinetics of I(Kr). We conclude that Kv11.1 protein localizes in cholesterol and sphingolipid enriched membranes and that membrane cholesterol can modulate I(Kv11.1) and I(Kr).  相似文献   

8.
9.
Electrophysiological properties of human adipose tissue-derived stem cells   总被引:2,自引:0,他引:2  
Human adipose tissue-derived stem cells (hASCs) represent a potentially valuable cell source for clinical therapeutic applications. The present study was designed to investigate properties of ionic channel currents present in undifferentiated hASCs and their impact on hASCs proliferation. The functional ion channels in hASCs were analyzed by whole-cell patch-clamp recording and their mRNA expression levels detected by RT-PCR. Four types of ion channels were found to be present in hASCs: most of the hASCs (73%) showed a delayed rectifier-like K(+) current (I(KDR)); Ca(2+)-activated K(+) current (I(KCa)) was detected in examined cells; a transient outward K(+) current (I(to)) was recorded in 19% of the cells; a small percentage of cells (8%) displayed a TTX-sensitive transient inward sodium current (I(Na.TTX)). RT-PCR results confirmed the presence of ion channels at the mRNA level: Kv1.1, Kv2.1, Kv1.5, Kv7.3, Kv11.1, and hEAG1, possibly encoding I(KDR); MaxiK, KCNN3, and KCNN4 for I(KCa); Kv1.4, Kv4.1, Kv4.2, and Kv4.3 for I(to) and hNE-Na for I(Na.TTX). The I(KDR) was inhibited by tetraethyl ammonium (TEA) and 4-aminopyridine (4-AP), which significantly reduced the proliferation of hASCs in a dose-dependent manner (P < 0.05), as suggested by bromodeoxyurindine (BrdU) incorporation. Other selective potassium channel blockers, including linopiridine, iberiotoxin, clotrimazole, and apamin also significantly inhibited I(KDR). TTX completely abolished I(Na.TTX). This study demonstrates for the first time that multiple functional ion channel currents such as I(KDR), I(KCa), I(to), and I(Na.TTX) are present in undifferentiated hASCs and their potential physiological function in these cells as a basic understanding for future in vitro experiments and in vivo clinical investigations.  相似文献   

10.
T lymphocytes are exposed to hypoxia during their development and also when they migrate to hypoxic pathological sites such as tumors and wounds. Although hypoxia can affect T cell development and function, the mechanisms by which immune cells sense and respond to changes in O(2)-availability are poorly understood. K(+) channels encoded by the Kv1.3 subtype of the voltage-dependent Kv1 gene family are highly expressed in lymphocytes and are involved in the control of membrane potential and cell function. In this study, we investigate the sensitivity of Kv1.3 channels to hypoxia in freshly isolated human T lymphocytes and leukemic Jurkat T cells. Acute exposure to hypoxia (20 mmHg, 2 min) inhibits Kv1.3 currents in both cell types by 20%. Prolonged exposure to hypoxia (1% O(2) for 24 h) selectively decreases Kv1.3 protein levels in Jurkat T cells by 47%, but not Kvbeta2 and SK2 Ca-activated K(+) channel subunit levels. The decrease in Kv1.3 protein levels occurs with no change in Kv1.3 mRNA expression and is associated with a significant decrease in K(+) current density. A decrease in Kv1.3 polypeptide levels similar to that obtained during hypoxia is produced by Kv1.3 channel blockage. Our results indicate that hypoxia produces acute and long-term inhibition of Kv1.3 channels in T lymphocytes. This effect could account for the inhibition of lymphocyte proliferation during hypoxia. Indeed, we herein present evidence showing that hypoxia selectively inhibits TCR-mediated proliferation and that this inhibition is associated with a decrease in Kv1.3 proteins.  相似文献   

11.
The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype.  相似文献   

12.
13.
Perturbations in autophagy, apoptosis and differentiation have greatly affected the progression and therapy of acute myeloid leukaemia (AML). The role of X-linked inhibitor of apoptosis (XIAP)-related autophagy remains unclear in AML therapeutics. Here, we found that XIAP was highly expressed and associated with poor overall survival in patients with AML. Furthermore, pharmacologic inhibition of XIAP using birinapant or XIAP knockdown via siRNA impaired the proliferation and clonogenic capacity by inducing autophagy and apoptosis in AML cells. Intriguingly, birinapant-induced cell death was aggravated in combination with ATG5 siRNA or an autophagy inhibitor spautin-1, suggesting that autophagy may be a pro-survival signalling. Spautin-1 further enhanced the ROS level and myeloid differentiation in THP-1 cells treated with birinapant. The mechanism analysis showed that XIAP interacted with MDM2 and p53, and XIAP inhibition notably downregulated p53, substantially increased the AMPKα1 phosphorylation and downregulated the mTOR phosphorylation. Combined treatment using birinapant and chloroquine significantly retarded AML progression in both a subcutaneous xenograft model injected with HEL cells and an orthotopic xenograft model injected intravenously with C1498 cells. Collectively, our data suggested that XIAP inhibition can induce autophagy, apoptosis and differentiation, and combined inhibition of XIAP and autophagy may be a promising therapeutic strategy for AML.  相似文献   

14.
Previous studies have shown that central memory T (T(CM)) cells predominantly use the calcium-dependent potassium channel KCa3.1 during acute activation, whereas effector memory T (T(EM)) cells use the voltage-gated potassium channel Kv1.3. Because Kv1.3-specific pharmacological blockade selectively inhibited anti-CD3-mediated proliferation, whereas naive T cells and T(CM) cells escaped inhibition due to up-regulation of KCa3.1, this difference indicated a potential for selective targeting of the T(EM) population. We examined the effects of pharmacological Kv1.3 blockers and a dominant-negative Kv1.x construct on T cell subsets to assess the specific effects of Kv1.3 blockade. Our studies indicated both T(CM) and T(EM) CD4+ T cells stimulated with anti-CD3 were inhibited by charybdotoxin, which can block both KCa3.1 and Kv1.3, whereas margatoxin and Stichodactyla helianthus toxin, which are more selective Kv1.3 inhibitors, inhibited proliferation and IFN-gamma production only in the T(EM) subset. The addition of anti-CD28 enhanced proliferation of freshly isolated cells and rendered them refractory to S. helianthus, whereas chronically activated T(EM) cell lines appeared to be costimulation independent because Kv1.3 blockers effectively inhibited proliferation and IFN-gamma regardless of second signal. Transduction of CD4+ T cells with dominant-negative Kv1.x led to a higher expression of CCR7+ T(CM) phenotype and a corresponding depletion of T(EM). These data provide further support for Kv1.3 as a selective target of chronically activated T(EM) without compromising naive or T(CM) immune functions. Specific Kv1.3 blockers may be beneficial in autoimmune diseases such as multiple sclerosis in which T(EM) are found in the target organ.  相似文献   

15.
16.
Curcumin, a major constituent of the spice turmeric, is a nutriceutical compound reported to possess therapeutic properties against a variety of diseases ranging from cancer to cystic fibrosis. In whole-cell patch-clamp experiments on bovine adrenal zona fasciculata (AZF) cells, curcumin reversibly inhibited the Kv1.4K+ current with an IC50 of 4.4 microM and a Hill coefficient of 2.32. Inhibition by curcumin was significantly enhanced by repeated depolarization; however, this agent did not alter the voltage-dependence of steady-state inactivation. Kv1.4 is the first voltage-gated ion channel demonstrated to be inhibited by curcumin. Furthermore, these results identify curcumin as one of the most potent antagonists of these K+ channels identified thus far. It remains to be seen whether any of the therapeutic actions of curcumin might originate with its ability to inhibit Kv1.4 or other voltage-gated K+ channel.  相似文献   

17.
Acute myeloid leukaemia (AML) is a common hematopoietic disease that is harmful to the lives of children and adults. CircRNAs are aberrantly expressed in the haematologic malignancy cells. However, the expression of circTASP1 and its function in AML remain unclear. In this study, we showed that circTASP1 was significantly up-regulated in AML peripheral blood samples and cells. Knockdown of circTASP1 inhibited proliferation and promoted apoptosis of HL60 and THP-1 cells in vitro. Bioinformatics prediction and luciferase reporter assay proved that circTASP1 sponged miR-515-5p and negatively regulated miR-515-5p expression in HL60 and THP-1 cells. High mobility group A2 (HMGA2) was proved to be a downstream target of miR-515-5p. The rescue experiments confirmed that knockdown of circTASP1 inhibited proliferation and induced apoptosis by modulating miR-515-5p/HMGA2 pathway. Moreover, the in vivo experiment indicated that knockdown of circTASP1 suppressed tumour growth. In conclusion, circTASP1 acts as a sponge for miR-515-5p to regulate HMGA2, thereby promoting proliferation and inhibiting apoptosis during AML progression. Thus, circTASP1 has the potential to be explored as a therapeutic target for AML treatment.  相似文献   

18.
We identify a new mechanism for the beta(1)-adrenergic receptor (beta(1)AR)-mediated regulation of human ether-a-go-go-related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3epsilon proteins is competed by wild type beta(1)AR by means of a novel interaction between this receptor and 14-3-3epsilon. The association between beta(1)AR and 14-3-3epsilon is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The beta(1)AR/14-3-3epsilon association is direct, since it can be recapitulated using purified 14-3-3epsilon and beta(1)AR fusion proteins and is abolished in cells expressing beta(1)AR phosphorylation-deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that beta(1)AR phosphorylation-deficient mutants do not recruit 14-3-3epsilon away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type beta(1)AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both beta(1)AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness.  相似文献   

19.
Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.  相似文献   

20.
The voltage gated potassium channel (Kv1.3) has been shown to play a role in immune responsiveness. Blockade of the channel led to diminution of T cell activation and delayed type hypersensitivity. Previous in vitro studies of the blockade were focused on T cell activation and proliferation. In this study we examined other T and monocytic cell mediated events to glean the extent of the immunosuppressive effects of a Kv1.3 specific inhibitor, Margatoxin (MgTX). We found that MgTX inhibited the intracellular production of Th-1 as well as Th-2 cytokines. MgTX can also inhibit IL-2 production and proliferation of T cells upon stimulation with anti-CD3 and VCAM-1. Furthermore, a redirected cytolytic activity was also inhibited by MgTX. However, MgTX did not inhibit generation of CTL to EBV transformed lymphoma cells or antibody-dependent cellular cytolysis mediated by monocytes. It appears that a Kv1.3 blockade does not affect all immune responses, particularly those of innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号