首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure was developed for the detection of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in myelin. This assay was sufficiently sensitive to detect the low levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human erythrocytes. The 2′,3′-cyclic nucleotide 3′-phosphohydrolase of human erythrocytes was determined to be exclusively associated with the inner (cytosolic) side of the membrane. Leaky ghostsand resealed ghosts were assayed for 2′,3′-cyclic nucleotide 3′-phosphohydrolase, (Ca2+/Mg2+-ATPase, and acetylcholinesterase activity, and the 2′,3′-cyclic nucleotide 3′-phosphohydrolase profile is the same as that of the (Ca2+/Mg2+)-ATPase, an established inner membrane maker.  相似文献   

2.
In the course of studying mammalian erythrocytes we noted prominent differences in the red cells of the rat. Analysis of ghosts by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis showed that membranes of rat red cells were devoid of band 6 or the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). Direct measurements of this enzyme showed that glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was about 25% of that in human cells; all of the glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was within the cytoplasm and none was membrane bound; and in the human red cell, about 1/3 of the enzyme activity was within the cytoplasm and 2/3 membrane bound. The release of glyceraldehyde-3-phosphate dehydrogenase from fresh rat erythrocytes immediately following saponin lysis was also determined using the rapid filtration technique recently described. The extrapolated zero-time intercepts of these reactions confirmed that, in the rat erythrocyte, none of the cellular glyceraldehyde-3-phosphate dehydrogenase was membrane bound. Failure of rat glyceraldehyde-3-phosphate dehydrogenase to bind to the membranes of the intact rat erythrocyte seems to be due to cytoplasmic metabolites which interact with the enzyme and render it incapable of binding to the membrane.  相似文献   

3.
Glial cells were isolated from the cerebra of 7-day old rats and the effect of serum on the development of these cells in culture was studied. The activities of the oligodendrocyte marker-enzymes, 2′3′-cyclic nucleotide 3′-phosphodiesterase and glycerol 3-phosphate dehydrogenase and the synthesis of the myelin-associated sulpholipid, sulphatide, were used to monitor the differentiation of these cells in vitro. The results indicate that serum: (i) represses lipogenesis, cholesterogenesis and sulphatide synthesis, (ii) lowers the expression of 2′3′-cyclic nucleotide 3′ phosphodiesterase and glycerol 3-phosphate dehydrogenase but not of lactate dehydrogenase and (iii) thus impairs the differentiation of oligodendrocytes.  相似文献   

4.
Summary Hypotonic human erythrocyte ghosts, devoid of the original glyceraldehyde-3-phosphate dehydrogenase content of the red cell, bind added glyceraldehyde-3-phosphate dehydrogenases, isolated from human erythrocytes, rabbit and pig muscle, as well as rabbit muscle aldolase. There are only slight differences in the affinities towards the various glyceraldehyde-3-phosphate dehydrogenases. On the other hand, glyceraldehyde-3-phosphate dehydrogenases are bound much stronger than aldolase; in an equimolar mixture the former can prevent the binding of the latter, or replace previously bound aldolase at the membrane surface. Binding is always accompanied by the partial inactivation of enzymes, which can be reverted by desorption. Unwashed ghosts rich in hemoglobin seem to have a more pronounced inactivating effect on bound glyceraldehyde-3-phosphate dehydrogenase. In isotonic media ghosts, whether white or unwashed, reseal and do not interact with the enzymes.  相似文献   

5.
The effect of several inhibitors of the enzyme cyclic 3′,5′-AMP phosphodiesterase as chemoattractants in Physarum polycephalum was examined. Of the compounds tested, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Roche 20-1724/001) and 1-ethyl-4-(isopropylidinehydrazino)-1H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid ethyl ester, hydrochloride (Squibb 20009) were the most potent attractants. 3-Isobutyl-1-methyl xanthine, theophylline, and morin (a flavanoid) were moderate attractants and sometimes gave negative chemotaxis at high concentrations. Cyclic 3′,5′-AMP was an effective, but not potent attractant. A repellent effect following the positive chemotactic action was sometimes observed with cyclic 3′,5′-AMP at concentrations as high as 1 · 10−2 M. Dibutyryl cyclic AMP appeared to be a somewhat more potent attractant than cyclic 3′,5′-AMP. The 8-thiomethyl and 8-bromoderivatives of cyclic AMP, which are poorly hydrolyzed by the phosphodiesterase, were not attractants in Physarum. Possible participation of cyclic 3′,5′-AMP in the directional movement in P. polycephalum is discussed.  相似文献   

6.
When unsealed erythrocyte ghosts in 6 mm phosphate buffer (pH 8.0, 4 °C) were incubated with bilirubin in excess of 0.1 mm and washed with buffer, a single polypeptide component (band 6 in sodium dodecyl sulfate-polyacrylamide-gel electrophoresis) diminished and was recovered in the supernatant fraction. Release of this component was virtually complete at 1 mm initial bile pigment. Since band 6 was believed to be the protomer of membrane-bound glyceraldehyde-3-phosphate dehydrogenase (G3PD), assays for this enzyme in bilirubin-treated ghosts were carried out. These revealed that enzymatic activity decreased concurrently with the disappearance of band 6. The molecular weight of the eluted polypeptide was found to be 36,000, in agreement with the known value for the G3PD protomer. When Mg2+-resealed ghosts were washed after exposure to 1 mm bilirubin, less than 20% of the G3PD was eluted, which is consistent with the fact that the enzyme is attached to the cytoplasmic face of the membrane. NAD+ in concentrations up to 2 mm displaced no more than 15% of the G3PD from unsealed ghosts. However, after preincubation with NAD+ (1 mm) followed by bilirubin (1 Mm) and washing, loss of G3PD was similar to that observed in the absence of cofactor. Since NAD+ did not attenuate release of the enzyme, it appears unlikely that such release is attributable to binding of bilirubin at the active site. Protoporphyrin acted similarly to bilirubin on unsealed ghosts, whereas rose bengal had a more pronounced effect, removing all enzymatic activity when the dye concentration reached 0.2 mm. Electrophoretic analysis of ghosts after rose bengal treatment, however, revealed a diminution not only of band 6 but bands 1, 2, and 5 as well.  相似文献   

7.
2′,3′-Dideoxy-3′-aminonucleoside 5′-triphosphates have been shown to be inhibitors of replicative DNA synthesis in isolated nuclei of sea urchin embryo. These compounds inhibit the Okazaki fragment synthesis. The effect of 2′,3′-dideoxy-3′-aminothymidine 5′-triphosphate and arabinothymidine 5′-triphosphate is reversible when adding the corresponding substrate for DNA synthesis, 2′-deoxythymidine 5′-triphosphate.  相似文献   

8.
2′,3′-Dideoxy-3′-aminonucleoside 5′-triphosphates are shown to be strong inhibitors of repair DNA synthesis in γ-irradiated rat liver chromatin. The activity of these compounds is comparable with that of the most effective inhibitor of the DNA polymerase β-catalyzed repair DNA synthesis.  相似文献   

9.
An aryl azide derivative of glucosamine, N-(4-iodoazidosalicyl)-2-amido-2-deoxy-D-glucopyranose (GlcNAs), was synthesized as a potential photoaffinity label for the facilitative hexose carrier. The derivative inhibited hexose uptake into intact human erythrocytes half-maximally at 3.5 mM and was itself slowly transported into cells. However, photolysis of iodinated GlcNAs with leaky erythrocyte ghosts produced appreciable labeling on gel electrophoresis only of Band 6, which is glyceraldehyde-3-phosphate dehydrogenase. Band 6 photolabeling in leaky ghosts by GlcNAs was: saturable, due mostly to the aryl azide moiety, inhibited by agents with known affinity for the enzyme including sulfhydryl reagents and the enzyme substrate glyceraldehyde-3-phosphate, and not inhibited by the free-radical scavenger p-aminobenzoic acid. Moreover, GlcNAs also inhibited erythrocyte glyceraldehyde-3-phosphate dehydrogenase activity in a dose-dependent fashion in the dark and more potently following irradiation. In resealed ghosts, Band 6 labeling was decreased by D-glucose, reflecting inhibition of carrier-mediated uptake of the agent. GlcNAs appears to be a specific photoaffinity label for erythrocyte glyceraldehyde-3-phosphate dehydrogenase, and therefore potentially useful for studies of enzyme activity, compartmentation, or membrane association.  相似文献   

10.
The structural elucidation of 1′,2′-dideacetylboronolide, 5,6-dihydro-6-(3′-acetoxy-1′,2′-dihydroxyheptyl)2-pyrone, a new α-pyrone isolated from the leaves of Iboza riparia has been performed. Additionally, three sterols, sitosterol, stigmasterol and campesterol, have been identified in this species.  相似文献   

11.
A procedure was developed for the detection of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in myelin. This assay was sufficiently sensitive to detect the low levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human erythrocytes. The 2′,3′-cyclic nucleotide 3′-phosphohydrolase of human erythrocytes was determined to be exclusively associated with the inner (cytosolic) side of the membrane. Leaky ghostsand resealed ghosts were assayed for 2′,3′-cyclic nucleotide 3′-phosphohydrolase, (Ca2+/Mg2+-ATPase, and acetylcholinesterase activity, and the 2′,3′-cyclic nucleotide 3′-phosphohydrolase profile is the same as that of the (Ca2+/Mg2+)-ATPase, an established inner membrane maker.  相似文献   

12.
Abstract: The binding of 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform 1 (CNP1) to myelin and its association with cytoskeletal elements of the sheath have been characterized with in vitro synthesized polypeptides and purified myelin. We have previously shown that the cysteine residue present in the carboxy-terminal CXXX box of CNP1 is isoprenylated, and that both C15 farnesyl and C20 geranylgeranyl isoprenoids can serve as substrates for the modification. Here, we have mutated the CXXX box to obtain selectively farnesylated CNP1 or geranyl-geranylated CNP1 and found that these two modified forms of CNP1 behave identically in all of the assays performed. Isoprenylation is essential but not sufficient for the binding of in vitro synthesized CNP1 to purified myelin, because a control nonmyelin protein is isoprenylated, yet unable to bind to myelin. In our assay, membrane-bound CNP1 partitions quantitatively into the non-ionic detergent-insoluble phase of myelin, suggesting that CNP1 binds to cytoskeletal elements within myelin. However, isoprenylated CNP1 fails to bind to the cytoskeletal matrix isolated from myelin by detergent treatment, implying that both detergent-soluble and insoluble myelin components are involved in the binding of CNP1. A model for the interactions between CNP1 and myelin is presented, consistent with models proposed for other isoprenylated proteins.  相似文献   

13.
Previously it was shown that amoebae of some Dictyostelium species are attracted by adenosine cyclic 3′,5′-monophosphate (cyclic AMP), and to a lesser extent, by the analogues of this nucleotide.We measured the chemotactic activity of several 5′-amido analogues of cyclic AMP by using a small population assay.Our investigations have shown unequivocally that the molecular receptor systems of cyclic AMP of the amoebae are highly sensitive to stereochemical alternation at the 5′position of the cyclophosphate ring, while the replacement of oxygen by nitrogen seems to exert no major influence. Alteration of the stereochemical envelope of the ring by a protruding group decisively alters the biological activity of the molecule, an effect which clearly does not depend on the type ot the group which protrudes.  相似文献   

14.
The site of inhibition of chlorophyll biosynthesis by α′,α′-dipyridyl was found to be at the level of conversion of chlorophyllide (672 nm) to chlorophyll (678 nm) during greening of groundnut leaves. This inhibition was partially reversed by certain divalent cations.  相似文献   

15.
Two types of new Sepharose-bound pyridoxal 5′-phosphate, N-immobilized and 3-0-immobilized pyridoxal 5′-phosphate analogues, were prepared by reacting pyridoxal 5′-phosphate with a bromoacetyl derivative of Sepharose 4B in dimethylformamide (50% v/v) and in potassium phosphate buffer (pH 6.0) for approx. 70 h at room temperature in the dark, respectively. The properties of these immobilized pyridoxal 5′-phosphate derivatives including their catalytic activities in the non-enzymatic cleavage reaction of tryptophan were studied in comparison with those of the 6-immobilized pyridoxal 5′-phosphate analogue reported previously by the present authors. The usefulness of these pyridoxal 5′-phosphate analogues in the preparation of immobilized tryptophanase was demonstrated.  相似文献   

16.
Human erythrocyte UDPgalactose : 2-acetamido-2-deoxy-α-d-galactopyranosylpeptide galactose transferase (Galactosyltransferase) has been characterized in terms of detergent and metal ion requirements, Michaelis constants for donor and acceptor substrates, inhibition constant for N-acetylgalactosamine, pH optimum and ionic strength effects. The assay thus optimized permits initial velocity measurements. Galactosyltransferase was shown to be membrane-bound by demonstrating its association with erythrocyte ghosts after high and low ionic strength treatments to remove weakly-associated proteins. In the absence of detergents, no activity was detectable in sealed ghosts and inside-out vesicles derived from erythrocyte membranes. Enzyme activation by detergents paralleled solubilization of membrane proteins. Both latency and solubilization studies indicated a substrate-inaccessible active site for the enzyme in situ in the membrane. Galactosyltransferase activity in resealed ghosts, leaky ghosts and inside-out vesicles was resistant to the action of trypsin, chymotrypsin or pronase applied as single agents. A mixture of these proteases, however, strongly reduced the enzyme activity in inside-out vesicles and leaky ghosts, indicating a cytosolic orientation for the active site of the galactosyltransferase.  相似文献   

17.
3,3′,4,4′-Tetrachloroazobenzene (TCAB) and 3,3′,4,4′-tetrachloroazoxybenzene (TCAOB) are dioxin-like chemicals that were investigated for toxicity in 13-week gavage studies in male and female B6C3F1 mice and F344N rats by the National Toxicology Program. As part of the comprehensive toxicological investigation of these chemicals, peripheral blood smears from mice treated 5 days per week for 13 weeks with 0.1–30 mg/kg/day TCAB or TCAOB were analyzed for the frequency of micronucleated (MN) normochromatic erythrocytes (NCE). Both chemicals produced significant increases in MN-NCE in male and female mice. In contrast to these positive results in subchronic exposure studies, no significant increases were seen in acute bone marrow MN tests in male mice administered three daily injections of 50–200 mg/kg/day TCAB and TCAOB. The results with TCAB and TCAOB suggest that the routine integration of MN tests with subchronic toxicity studies may allow detection of mutagenic activity for some chemicals that fail to elicit responses in short-term, high dose tests. In addition, the integration of mutagenicity tests into general toxicity tests reduces the use of laboratory animals and the cost of the testing.  相似文献   

18.
Meylin partially purified from spinal cords of dysmyelinating mutant (shiverer) mice had almost three-fold the specific activity of 5′-nucleotidase found in the respective myelin fraction from normal mice. The specific activities of two other normally myelin-associated enzymes, 2′,3′-cyclic nucleotide-3′-phosphohydrolase and carbonic anhydrase, were only slightly higher in the myelin membranes from shiveres, compared to those from controls. In the mutants, the three enzymes probably occur in oligodendrocyte processes. Hhypothetically, the 5′-nucleotidase in the myelin sheath in shiverer and normal mice may be localized in specialized structures.  相似文献   

19.
Rat glioma cells of clone C6 were hybridized in vitro with mouse L cells of clone A9 or with freshly isolated mouse macrophages, and the hybrids were assayed for glial cell functions. C6 cells expressed high levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP; EC 3.1.4.37), β-hydroxybutyrate dehydrogenase (HBDH; EC 1.1.1.30), glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8), and inducibility of GPDH by hydrocortisone (HC). A9 cells and macrophages had very low activities of these functions. Hybrids between C6 and A9 or between C6 and macrophages had greatly reduced activities of these functions, but the hybrids expressed significantly higher activities than the non-glial parent. This incomplete extinction was not due to fusion of two glioma cells with one L cell or macrophage. The difference in GPDH activity in the hybrids as compared with the non-glial parent was due to incomplete shut-off of GPDH of the glial parent, and not to an increase in GPDH production by the non-glial genome.  相似文献   

20.
A rapid and convenient procedure for isolating human glyceraldehyde-3-phosphate dehydrogenase from erythrocytes has been developed and yields enzyme with a specific activity of 33–52. The physical and catalytic properties of the enzyme are similar to those of rabbit muscle enzyme. Reassociation of freshly isolated human glyceraldehyde-3-phosphate dehydrogenase with washed erythrocyte membranes increases the specific activity and stability of the enzyme suggesting that enzyme-membrane interactions may have an important effect on the conformation and catalytic activity. That the human enzyme behaves as a dimer of dimers, similar to the behavior or rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, is suggested by its half-of-the-sites reactivity toward 4-iodoacetamido-1-naphthol. The human enzyme binds nicotinamide hypoxanthine dinucleotide, a structural analog of NAD+, with negative cooperativity, further indicating its similarity to rabbit muscle enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号