首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p66Shc, the growth factor adaptor protein, can have a substantial impact on mitochondrial metabolism through regulation of cellular response to oxidative stress. We investigated relationships between the extent of p66Shc phosphorylation at Ser36, mitochondrial dysfunctions and an antioxidant defense reactions in fibroblasts derived from five patients with various mitochondrial disorders (two with mitochondrial DNA mutations and three with methylglutaconic aciduria and genetic defects localized, most probably, in nuclear genes). We found that in all these fibroblasts, the extent of p66Shc phosphorylation at Ser36 was significantly increased. This correlated with a substantially decreased level of mitochondrial superoxide dismutase (SOD2) in these cells. This suggest that SOD2 is under control of the Ser36 phosphorylation status of p66Shc protein. As a consequence, an intracellular oxidative stress and accumulation of damages caused by oxygen free radicals are observed in the cells.  相似文献   

2.
Epidermal growth factor (EGF) induces tyrosine phosphorylation of the Shc adapter protein, which plays an important role in EGF-stimulated mitogenesis. Shc stimulates Ras/mitogen-activated protein kinase (MAPK) through forming a complex with Grb2 at the phosphorylated tyrosine (Y) residue 317. In this study, we identified novel phosphorylation sites of Shc, at Y239 and Y240. To define the Shc pathway further, we used NIH 3T3 cells expressing the previously characterized mutant EGF receptor (EGF-R) which lacks all known autophosphorylation sites but retains EGF-stimulated mitogenesis with selective phosphorylation of Shc. We constructed wild-type (WT) or mutant Shc cDNAs in which Y317 or/and Y239 and Y240 are replaced with phenylalanine (F) and introduced them into NIH 3T3 cells expressing WT or mutant EGF-R. In the WT EGF-R-expressing cells, the Y239/240/317F Shc, but not Y317F or Y239/240F Shc, decreased EGF-stimulated cell growth. In the mutant EGF-R-expressing cells, Y317F Shc or Y239/240F Shc decreased EGF-stimulated cell growth significantly, though Y317F was a little more potent than Y239/240F. Although cells expressing the Y317F Shc hardly activated MAPK in response to EGF, cells expressing the Y239/240F Shc fully activated MAPK. In contrast, Y239/240F Shc, but not Y317F Shc, reduced the EGF-induced c-myc message. These results suggest that Shc activates two distinct signaling pathways, Y317 to Ras/MAPK and Y239 and Y240 to another pathway including Myc, and that both are involved in EGF-induced mitogenic signaling.  相似文献   

3.
We have isolated a human cDNA for the signaling adapter molecule FRS-2/suc1-associated neurotrophic factor target and shown that it is tyrosine-phosphorylated in response to nerve growth factor (NGF) stimulation. Importantly, we demonstrate that the phosphotyrosine binding domain of FRS-2 directly binds the Trk receptors at the same phosphotyrosine residue that binds the signaling adapter Shc, suggesting a model in which competitive binding between FRS-2 and Shc regulates differentiation versus proliferation. Consistent with this model, FRS-2 binds Grb-2, Crk, the SH2 domain containing tyrosine phosphatase SH-PTP-2, the cyclin-dependent kinase substrate p13(suc1), and the Src homology 3 (SH3) domain of Src, providing a functional link between TrkA, cell cycle, and multiple NGF signaling effectors. Importantly, overexpression of FRS-2 in cells expressing an NGF nonresponsive TrkA receptor mutant reconstitutes the ability of NGF to stop cell cycle progression and to stimulate neuronal differentiation.  相似文献   

4.
Thrombin activates protease-activated receptor-1 (PAR-1) and engages signaling pathways that influence the growth and survival of cardiomyocytes as well as extracellular matrix remodeling by cardiac fibroblasts. This study examines the role of Shc proteins in PAR-1-dependent signaling pathways that influence ventricular remodeling. We show that thrombin increases p46Shc/p52Shc phosphorylation at Tyr(239)/Tyr(240) and Tyr(317) (and p66Shc-Ser(36) phosphorylation) via a pertussis toxin-insensitive epidermal growth factor receptor (EGFR) transactivation pathway in cardiac fibroblasts; p66Shc-Ser(36) phosphorylation is via a MEK-dependent mechanism. In contrast, cardiac fibroblasts express beta(2)-adrenergic receptors that activate ERK through a pertussis toxin-sensitive EGFR transactivation pathway that does not involve Shc isoforms or lead to p66Shc-Ser(36) phosphorylation. In cardiomyocytes, thrombin triggers MEK-dependent p66Shc-Ser(36) phosphorylation, but this is not via EGFR transactivation (or associated with Shc-Tyr(239)/Tyr(240) and/or Tyr(317) phosphorylation). Importantly, p66Shc protein expression is detected in neonatal, but not adult, cardiomyocytes; p66Shc expression is induced (via a mechanism that requires protein kinase C and MEK activity) by Pasteurella multocida toxin, a Galpha(q) agonist that promotes cardiomyocyte hypertrophy. These results identify novel regulation of individual Shc isoforms in receptor-dependent pathways leading to cardiac hypertrophy and the transition to heart failure. The observations that p66Shc expression is induced by a Galpha(q) agonist and that PAR-1 activation leads to p66Shc-Ser(36) phosphorylation identifies p66Shc as a novel candidate hypertrophy-induced mediator of cardiomyocyte apoptosis and heart failure.  相似文献   

5.
Fms, the macrophage colony-stimulating factor (M-CSF) receptor, is normally expressed in myeloid cells and initiates signals for both growth and development along the monocyte/macrophage lineage. We have examined Fms signal transduction pathways in the murine myeloid progenitor cell line FDC-P1. M-CSF stimulation of FDC-P1 cells expressing exogenous Fms resulted in tyrosine phosphorylation of a variety of cellular proteins in addition to Fms. M-CSF stimulation also resulted in Fms association with two of these tyrosine-phosphorylated proteins, one of which was identified as the 55-kDa Shc, which is shown in other systems to be involved in growth stimulation, and the other was a previously uncharacterized 150-kDa protein (p150). Fms also formed complexes with Grb2 and Sos1, and neither contained phosphotyrosine. Whereas both Grb2 and Sos1 complexed with Fms only after M-CSF stimulation, the amount of Sos1 complexed with Grb2 was not M-CSF dependent. Shc coimmunoprecipitated Sos1, Grb2, and tyrosine-phosphorylated p150, while Grb2 immunoprecipitates contained mainly phosphorylated p150, Fms, Shc, and Sos1. Shc interacted with tyrosine-phosphorylated p150 via its SH2 domain, and the Grb2 SH2 domain likewise bound tyrosine-phosphorylated Fms and p150. Analysis of Fms mutated at each of four tyrosine autophosphorylation sites indicated that none of these sites dramatically affected p150 phosphorylation or its association with Shc and Grb2. M-CSF stimulation of fibroblast cell lines expressing exogenous murine Fms did not phosphorylate p150, and this protein was not detected either in cell lysates or in Grb2 or Shc immunoprecipitates. The p150 protein is not related to known signal transduction molecules and may be myeloid cell specific. These results suggest that M-CSF stimulation of myeloid cells could activate Ras through the nucleotide exchange factor Sos1 by Grb2 binding to either Fms, Shc, or p150 and that Fms signal transduction in myeloid cells differs from that in fibroblasts.  相似文献   

6.
7.
Interaction of Shc with Grb2 regulates association of Grb2 with mSOS.   总被引:13,自引:5,他引:8       下载免费PDF全文
The adapter protein Shc has been implicated in Ras signaling via many receptors, including the T-cell antigen receptor (TCR), B-cell antigen receptor, interleukin-2 receptor, interleukin-3 receptor, erythropoietin receptor, and insulin receptor. Moreover, transformation via polyomavirus middle T antigen is dependent on its interaction with Shc and Shc tyrosine phosphorylation. One of the mechanisms of TCR-mediated, tyrosine kinase-dependent Ras activation involves the simultaneous interaction of phosphorylated Shc with the TCR zeta chain and with a second adapter protein, Grb2. Grb2, in turn, interacts with the Ras guanine nucleotide exchange factor mSOS, thereby leading to Ras activation. Although it has been reported that in fibroblasts Grb2 and mSOS constitutively associate with each other and that growth factor stimulation does not alter the levels of Grb2:mSOS association, we show here that TCR stimulation leads to a significant increase in the levels of Grb2 associated with mSOS. This enhanced Grb2:mSOS association, which occurs through an SH3-proline-rich sequence interaction, is regulated through the SH2 domain of Grb2. The following observations support a role for Shc in regulating the Grb2:mSOS association: (i) a phosphopeptide corresponding to the sequence surrounding Tyr-317 of Shc, which displaces Shc from Grb2, abolished the enhanced association between Grb2 and mSOS; and (ii) addition of phosphorylated Shc to unactivated T cell lysates was sufficient to enhance the interaction of Grb2 with mSOS. Furthermore, using fusion proteins encoding different domains of Shc, we show that the collagen homology domain of Shc (which includes the Tyr-317 site) can mediate this effect. Thus, the Shc-mediated regulation of Grb2:mSOS association may provide a means for controlling the extent of Ras activation following receptor stimulation.  相似文献   

8.
The Grb2 and Shc adapter proteins play critical roles in coupling activated growth factor receptors to several cellular signaling pathways. To assess the role of these molecules in mammary epithelial development and tumorigenesis, we have generated transgenic mice which individually express the Grb2 and Shc proteins in the mammary epithelium. Although mammary epithelial cell-specific expression of Grb2 or Shc accelerated ductal morphogenesis, mammary tumors were rarely observed in these strains. To explore the potential role of these adapter proteins in mammary tumorigenesis, mice coexpressing either Shc or Grb2 and a mutant form of polyomavirus middle T (PyV mT) antigen in the mammary epithelium were generated. Coexpression of either Shc or Grb2 with the mutant PyV mT antigen resulted in a dramatic acceleration of mammary tumorigenesis compared to parental mutant PyV mT strain. The increased rate of tumor formation observed in these mice was correlated with activation of the epidermal growth factor receptor family and mitogen-activated protein kinase pathway. These observations suggest that elevated levels of the Grb2 or Shc adapter protein can accelerate mammary tumor progression by sensitizing the mammary epithelial cell to growth factor receptor signaling.  相似文献   

9.
Okadaic acid is a powerful inhibitor of serine/threonine protein phosphatases 1 and 2A. Although it is known as a potent tumour promoter, the intracellular mechanism by which okadaic acid mediates its mitogenic effect remains to be clarified. We investigated the effect of okadaic acid on the activation of mitogenesis in Rat1 fibroblasts overexpressing insulin receptors. As previously reported, insulin induced Shc phosphorylation, Shc-Grb2 association, MAP kinase activation, and BrdU incorporation. Okadaic acid also stimulated tyrosine phosphorylation of Shc and its subsequent association with Grb2 in a time- and dose-dependent manner without affecting tyrosine phosphorylation of insulin receptor beta-subunit and IRS. However, to a lesser extent, okadaic acid stimulated MAP kinase activity and BrdU incorporation. Interestingly, preincubation of okadaic acid potentiated insulin stimulation of tyrosine phosphorylation of Shc (213% of control), Shc-Grb2 association (150%), MAP kinase activity (152%), and BrdU incorporation (148%). These results further confirmed the important role of Shc, but not IRS, in cell cycle progression in Rat1 fibroblasts. Furthermore, serine/ threonine phosphorylation appears to be involved in the regulation of Shc tyrosine phosphorylation leading to mitogenesis by mechanisms independent of insulin signalling.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival. Gaining an understanding of how BDNF, via the tropomyosin-related kinase B (TRKB) receptor, elicits specific cellular responses is of contemporary interest. Expression of mutant TrkB in fibroblasts, where tyrosine 484 was changed to phenylalanine, abrogated Shc association with TrkB, but only attenuated and did not block BDNF-induced phosphorylation of mitogen-activated protein kinase (MAPK). This suggests there is another BDNF-induced signaling mechanism for activating MAPK, which compelled a search for other TrkB substrates. BDNF induces phosphorylation of fibroblast growth factor receptor substrate 2 (FRS2) in both fibroblasts engineered to express TrkB and human neuroblastoma (NB) cells that naturally express TrkB. Additionally, BDNF induces phosphorylation of FRS2 in primary cultures of cortical neurons, thus showing that FRS2 is a physiologically relevant substrate of TrkB. Data are presented demonstrating that BDNF induces association of FRS2 with growth factor receptor-binding protein 2 (GRB2) in cortical neurons, fibroblasts, and NB cells, which in turn could activate the RAS/MAPK pathway. This is not dependent on Shc, since BDNF does not induce association of Shc and FRS2. Finally, the experiments suggest that FRS2 and suc-associated neurotrophic factor-induced tyrosine-phosphorylated target are the same protein.  相似文献   

11.
It has been proposed that integrins activate ERK through the adaptor protein Shc independently of focal adhesion kinase (FAK) or through FAK acting on multiple target effectors, including Shc. We show that disruption of the actin cytoskeleton by cytochalasin D causes a complete inhibition of FAK but does not inhibit Shc signaling and activation of ERK. We have then generated primary fibroblasts carrying a targeted deletion of the segment of beta(1) subunit cytoplasmic domain required for activation of FAK. Analysis of these cells indicates that FAK is not necessary for efficient tyrosine phosphorylation of Shc, association of Shc with Grb2, and activation of ERK in response to matrix adhesion. In addition, integrin-mediated activation of FAK does not appear to be required for signaling to ERK following growth factor stimulation. To examine if FAK could contribute to the activation of ERK in a cell type-specific manner through the Rap1/B-Raf pathway, we have used Swiss-3T3 cells, which in contrast to primary fibroblasts express B-Raf. Dominant negative studies indicate that Shc mediates the early phase and peak, whereas FAK, p130(CAS), Crk, and Rap1 contribute to the late phase of integrin-dependent activation of ERK in these cells. In addition, introduction of B-Raf enhances and sustains integrin-mediated activation of ERK in wild-type primary fibroblasts but not in those carrying the targeted deletion of the beta(1) cytoplasmic domain. Thus, the Shc and FAK pathways are activated independently and function in a parallel fashion. Although not necessary for signaling to ERK in primary fibroblasts, FAK may enhance and prolong integrin-mediated activation of ERK through p130(CAS), Crk, and Rap1 in cells expressing B-Raf.  相似文献   

12.
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.  相似文献   

13.
Infection of mouse fibroblasts by wild-type polyomavirus results in increased phosphorylation of ribosomal protein S6 (D.A. Talmage, J. Blenis, and T.L. Benjamin, Mol. Cell. Biol. 8:2309-2315, 1988). Here we identify pp70 S6 kinase (pp70S6K) as a target for signal transduction events leading from polyomavirus middle tumor antigen (mT). Two partially transforming virus mutants altered in different mT signalling pathways have been studied to elucidate the pathway leading to S6 phosphorylation. An upstream role for mT-phosphatidylinositol 3-kinase (PI3K) complexes in pp70S6K activation is implicated by the failure of 315YF, a mutant unable to promote PI3K binding, to elicit a response. This conclusion is supported by studies using wortmannin, a known inhibitor of PI3K. In contrast, stable interaction of mT with Shc, a protein thought to be involved upstream of Ras, is dispensable for pp70S6K activation. 250YS, a mutant mT which retains a binding site for PI3K but lacks one for Shc, stimulates pp70S6K to wild-type levels. Mutants 315YF and 250YS induce partial transformation of rats fibroblasts with distinct phenotypes, as judged from morphological and growth criteria. Neither mutant induces growth in soft agar, indicating that an increase in S6 phosphorylation, while necessary for cell cycle progression in normal mitogenesis, is not sufficient for anchorage-independent cell growth. In the polyomavirus systems, the latter requires integration of signals from mT involving both Shc and PI3K.  相似文献   

14.
The Y1250F/Y1251F mutant of the insulin-like growth factor I receptor (IGF-IR) has tyrosines 1250 and 1251 mutated to phenylalanines and is deficient in IGF-I-mediated suppression of apoptosis in FL5.12 lymphocytic cells. To address the mechanism of loss of function in this mutant we investigated signaling responses in FL5.12 cells overexpressing either a wild-type (WT) or Y1250F/Y1251F (mutant) IGF-IR. Cells expressing the mutant receptor were deficient in IGF-I-induced phosphorylation of the JNK pathway and had decreased ERK and p38 phosphorylation. IGF-I induced phosphorylation of Akt was comparable in WT and mutant expressing cells. The decreased activation of the mitogen-activated protein kinase (MAPK) pathways was accompanied by greatly decreased Ras activation in response to IGF-I. Although phosphorylation of Gab2 was similar in WT and mutant cell lines, phosphorylation of Shc on Tyr(313) in response to IGF-I was decreased in cells expressing the mutant receptor, as was recruitment of Grb2 and Ship to Shc. However, phosphorylation of Shc on Tyr(239), the Src phosphorylation site, was normal. A role for JNK in the survival of FL5.12 cells was supported by the observation that the JNK inhibitor SP600125 suppressed IGF-I-mediated protection from apoptosis. Altogether these data demonstrate that phosphorylation of Shc, and assembly of the Shc complex necessary for activation of Ras and the MAPK pathways are deficient in cells expressing the Y1250F/Y1251F mutant IGF-IR. This would explain the loss of IGF-I-mediated survival in FL5.12 cells expressing this mutant and may also explain why this mutant IGF-IR is deficient in functions associated with cellular transformation and cell migration in fibroblasts and epithelial tumor cells.  相似文献   

15.
It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis.  相似文献   

16.
17.
beta-Amyloid precursor protein (APP) is a widely expressed transmembrane protein of unknown function that is involved in the pathogenesis of Alzheimer's disease. The cytoplasmic tail of APP interacts with phosphotyrosine binding (PTB) domain containing proteins (Fe65, X11, mDab-1, and JIP-1) and may modulate gene expression and apoptosis. We now identify Shc A and Shc C, PTB-containing adapter proteins that signal to cellular differentiation and survival pathways, as novel APP-interacting proteins. The APP cytoplasmic tail contains a PTB-binding motif (Y(682)ENPTY(687)) that, when phosphorylated on Tyr(682), precipitated the PTB domain of Shc A and Shc C, as well as endogenous full-length Shc A. APP and Shc C were physically associated in adult mouse brain homogenates. Increase in phosphorylation of APP by overexpression of the nerve growth factor receptor Trk A in 293T cells promoted the interaction of transfected APP and endogenous Shc A. Pervanadate treatment of N2a neuroblastoma cells resulted in tyrosine phosphorylation and association of endogenous APP and Shc A. Thus, APP and Shc proteins interact in vitro, in cells, and in the mouse brain. Tyrosine phosphorylation of APP may promote the interaction with Shc proteins.  相似文献   

18.
During thymic development, the beta selection checkpoint is regulated by pre-T-cell receptor-initiated signals. Progression through this checkpoint is influenced by phosphorylation and activation of the serine/threonine kinases extracellular signal-regulated kinase 1 (ERK1) and ERK2, but the in vivo relevance of specific upstream players leading to ERK activation is not known. Here, using mice with a conditional loss of the shc1 gene or expressing mutants of ShcA, we demonstrate that the adapter protein ShcA is responsible for up to 70% of ERK activation in double-negative (DN) thymocytes in vivo and ex vivo. We also identify two specific tyrosines on ShcA that promote ERK phosphorylation in vivo, and mice expressing ShcA with mutations of these tyrosines show impaired DN thymocyte development. This work provides the first in vivo demonstration of the relative requirement of upstream adapters in controlling ERK activation during beta selection and suggests a dominant role for ShcA.  相似文献   

19.
The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have recently been elucidated biochemically and genetically. The present study was undertaken to determine whether common signaling components are used by these two distinct classes of receptors. Here we report that the adaptor protein Shc, is phosphorylated on tyrosine residues following stimulation of the thrombin receptor in growth-responsive CCL39 fibroblasts. Shc phosphorylation by thrombin or the thrombin receptor agonist peptide is maximal by 15 min and persists for > or = 2 h. Following thrombin stimulation, phosphorylated Shc is recruited to Grb2 complexes. One or more pertussis toxin-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4-beta-phorbol-12,13-dibutyrate has no effect. Rather, thrombin-induced Shc phosphorylation is enhanced in cells depleted of phorbol ester-sensitive protein kinase C isoforms. Expression of mutant Shc proteins defective in Grb2 binding displays a dominant-negative effect on thrombin-stimulated p44 MAP kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

20.
Many ligand-independent receptor tyrosine kinases are tumorigenic. The biochemical signals that mediate ligand-independent transformation of cells by these transmembrane receptors are poorly defined. In this report, we demonstrate that a constitutively activated mutant epidermal growth factor receptor (v-ErbB) induces the formation of a transformation-specific signaling module that complexes with myosin II. The components of this signaling complex include the signal adapter proteins Shc, Grb2, and Nck, and tyrosine-phosphorylated forms of p21-activated kinase (Pak), caldesmon, and myosin light chain kinase. Transformation-specific, tyrosine phosphorylation of Pak enhances the catalytic activity of this serine/threonine kinase. Furthermore, the tyrosine phosphorylation of Pak is Rho-, but not Ras-, Rac-, or Cdc42-dependent. These results demonstrate that a ligand-independent epidermal growth factor receptor mutant can transduce oncogenic signals that are distinct from ligand-dependent, mitogenic signals. In addition, these data provide evidence for the coupling of oncogenic receptor tyrosine kinases with the actomyosin molecular motor. This myosin-associated signaling module may mediate some of the biochemical changes of myosin found in v-ErbB- transformed fibroblasts, thereby contributing to the regulation of the mechanical forces governing cellular adhesion, cytoskeletal tension, and, hence, anchorage-independent cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号