首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro studies have shown that Bos taurus indicus (B. t. indicus) embryos submitted to heat shock at early stages of development are better able to survive as compared to Bos taurus taurus embryos. Embryo genotype influences resistance to heat shock thus leading to the question as to whether embryos sired by thermo-tolerant breeds exhibit the same resistance to heat shock. In the present study the influence of both oocyte and semen, on the resistance to heat shock (HS) at early stages of in vitro development, was assessed in B. t. indicus [Nelore (N) breed], B. t. taurus [Holstein (H) and Angus (A) breeds] and crossbreds. In Experiment 1, Nelore and crossbred oocytes were collected from slaughterhouse ovaries and fertilized with spermatozoa from Nelore and Angus bulls. Presumptive embryos were collected and randomly assigned to control (39 degrees C) or HS at 12, 48 or 96 h post insemination (hpi; 41 degrees C for 12h) treatments. The cleavage rates and proportion of embryos developing to the blastocyst and hatched blastocyst stages were recorded on Days 2, 8 and 10, respectively. Heat shock treatment decreased development of both Nelore and crossbred embryos. There was a significant interaction between time (12, 48 or 96 hpi) and temperature for blastocyst rates, i.e., the embryos became more thermotolerant as development proceeded. In Experiment 2, oocytes from Nelore and Holstein cows were fertilized with semen from bulls of either Nelore or Angus breeds, and subjected to 12 h HS at 96 hpi. Heat shock at 96 hpi, decreased embryo development. Additionally, cowxtreatment and bullxtreatment interactions were significant for blastocyst rates, i.e., both breed of cow and breed of bull affected the decline in blastocyst rate caused by heat shock treatment. In conclusion, the present results indicate that Nelore embryos (indicus) are more resistant to heat shock than Holstein (taurus) at early stages of in vitro development, and that embryos become more thermo-tolerant as development proceeds. Additionally, the resistance to heat shock was a result of the genetic contribution from both oocyte and spermatozoa.  相似文献   

2.
Embryos from Bos indicus are more resistant to elevated culture temperature (i.e. heat shock) than embryos from some Bos taurus breeds. The present experiment was designed to determine if Brahman embryos have greater resistance to heat shock than Holstein embryos at a stage in development before the embryonic genome was fully activated. A second objective was to test breed effects on estrus synchronization and superovulation responses. A total of 29 Brahman and 24 Holstein cows were subjected to estrus synchronization using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF2alpha) superovulation. Embryos were collected at 48 h and day 5 after insemination. There was a tendency for a lower proportion of Brahmans to be detected in standing estrus than Holsteins. There were no differences between breeds in the proportion of cows detected in estrus using both tailpaint and standing estrus as criteria or in interval from PGF2alpha to estrus. The degree of synchrony in estrus was greater for Brahmans. Superovulation response was generally similar between breeds. At 48 h after insemination, there was a tendency for a greater proportion of Brahman oocytes to have undergone cleavage. Uncleaved oocytes were cultured for an additional 24 h-at this time, cleavage rate was similar between breeds. When embryos reached the 2-4-cell stage, they were heat-shocked for 4.5 h at 41 degrees C. This heat shock reduced the proportion of embryos that developed to the blastocyst stage but there was no breedxtreatment interaction. At day 5 after insemination, the number of embryos recovered was too low to allow comparison of breed effects. In conclusion, genetic effects on cellular thermotolerance that make Brahman embryos more resistant to heat shock are not expressed at the 2-4-cell stage. There were few differences between Brahman and Holstein in response to estrus synchronization and superovulation. The fact that cleavage tended to occur earlier in Brahman than Holstein embryos suggests breed differences in timing of ovulation, fertilization or events leading to cleavage.  相似文献   

3.
The objectives of this study were to investigate differences in fertilization and development of embryos after in vitro fertilization of Bos taurus (cow) oocytes with sperm from either yaks (Bos grunniens) or Holstein bulls. Frozen-thawed spermatozoa (Holstein n=5 sires; yak n=5 sires) were evaluated for motility (forward progression) and acrosomal status immediately post-thaw and then 1, 2, 3, and 8h later. In vitro-matured cow oocytes (n=1652) were inseminated with either Holstein bull or yak spermatozoa and after an 18-h co-incubation period, a proportion of the oocytes were fixed and examined for sperm penetration, polyspermy, and male pronuclear formation. The remaining oocytes were cultured in vitro and evaluated for cleavage and blastocyst production rates. Overall, there were species differences (P<0.05) and an effect of time (P<0.01) in sperm motility and acrosome integrity. An effect (P<0.01) of a species-by-time interaction was detected for motility, but not for acrosome integrity. The percentage of oocytes penetrated and the formation of two pronuclei when cow oocytes were inseminated with yak spermatozoa (97.4% and 81.6%, respectively) were greater (P<0.01) than that achieved with Holstein bull spermatozoa (77.8% and 65.9%, respectively), but the incidence of polyspermy (>2 pronuclei) was similar (P>0.05; 10.8% vs. 15.8%). The yak male symbolxcow combination gave a higher cleavage rate than the Holstein male symbolxcow combination (P<0.05; 76.3% vs. 63.3%), but there was no difference in the blastocyst rate (17.9% vs. 14.5%). It is concluded that yak spermatozoa could successfully fertilize cattle oocytes and their hybrid embryos had normal competence to develop to blastocysts.  相似文献   

4.
The objective of this study was to compare thermal sensitivity of recipient ooplasm and donor nucleus from Holstein and Taiwan native yellow (TY) cows. Oocytes and cumulus cells from each breed were incubated at 43 °C (heat shock) or 38.5 °C (control) for 1 h prior to nucleus transplantation. Reconstructed embryos cloned by transfer of non-heated Holstein donor cells to heat-shocked Holstein ooplasm (Ho+-Hd) had a lower (P < 0.05) blastocyst rate than those cloned from non-heated Holstein ooplasm receiving heated (Ho-Hd+) or non-heated (Ho-Hd) Holstein donor cells (11.3 vs. 34.3 or 36.8%). Heat-shocked donor cells from either Holstein or TY cows did not significantly affect blastocyst rates of reconstructed embryos produced from Holstein ooplasm (30.6-32.9%). In contrast, blastocyst rates of reconstructed embryos generated with heat-shocked Holstein ooplasm were lower (P < 0.05) than that with heat-shocked TY ooplasm (11.2 vs 45.2%). Without heat shock, embryos reconstructed by transferring donor cells to ooplasm of Holstein or TY cows had similar (P > 0.05) blastocyst rates (28.9-33.3%). Transplantation of reconstructed embryos (n = 30) to recipients (n = 23) resulted in three live calves, derived from embryos cloned with TY ooplasm and donor nuclei from either Holstein (n = 2) or TY cows (n = 1). In conclusion, ooplasm of TY cattle was more resistant to heat stress than that derived from Holsteins; therefore, ooplasm may be a major determinant for thermal sensitivity in bovine oocytes and embryos.  相似文献   

5.
Various pathological stimuli such as radiation, environmental toxicants, oxidative stress, and heat shock can initiate apoptosis in mammalian oocytes. Experiments were performed to examine whether apoptosis mediated by group II caspases is the cause for disruption of oocyte function by heat shock applied during maturation in cattle. Bovine cumulus-oocyte complexes (COCs) were cultured at 38.5, 40, or 41 degrees C for the first 12 h of maturation. Incubation during the last 10 h of maturation, fertilization, and embryonic development were at 38.5 degrees C and 5% (v/v) CO2 for all treatments. In the first experiment, exposure of COCs to thermal stress during the first 12 h of maturation reduced cleavage rate and the number of oocytes developing to the blastocyst stage. In the second experiment, a higher percentage of TUNEL-positive oocytes was noted at the end of maturation for oocytes matured at 40 and 41 degrees C than for those at 38.5 degrees C. In addition, the distribution of oocytes classified as having high (>25 intensity units), medium (15-25 intensity units), and low (<15 intensity units) caspase activity was affected by treatment, with a greater proportion of heat-shocked oocytes having medium or high activity. In the third experiment, COCs were placed in maturation medium with vehicle (0.5% [v/v] DMSO) or 200 nM z-DEVD-fmk, an inhibitor of group II caspases. The COCs were matured at 38.5 or 41 degrees C, fertilized and cultured for 8 days. The inhibitor blocked the effect of heat shock on cleavage rate and the percentage of oocytes and cleaved embryos developing to the blastocyst stage. In conclusion, heat shock during oocyte maturation can promote an apoptotic response mediated by group II caspases, which, in turn, leads to disruption of the oocyte's capacity to support early embryonic development following fertilization.  相似文献   

6.
Ultrasound-guided transvaginal follicular aspiration combined with in vitro maturation/in vitro fertilization (IVM/IVF) and culture was used to obtain bovine preimplantation stage embryos. Evaluated were the effects of aspiration frequency on oocyte recovery and embryo development following IVM/IVF. In Experiment 1, transvaginal follicular aspiration was performed once (n=5) or twice (n=5) weekly in multiparous Angus cows with the aid of a transvaginal sector transducer (5-MHz). In Experiment 2, aspiration was performed on Angus cows once weekly (n=6), twice weekly (n=4), or twice weekly after treatment with FSH (15 mg; n=4). Follicles (>2 mm) were punctured using a 55-cm needle (17g), and oocytes were aspirated through the needle and silastic tubing (2 m) by vacuum suction (75 mmHg). The oocytes were examined for morphology and were in vitro matured and fertilized. Following IVF, all ova were co-cultured in vitro for 7 d on Buffalo Rat liver cells. Oocyte recovery rates per asp?ration session in Experiment 1 were not different between groups aspirated once or twice weekly (6.8+/-2.0 vs 6.3+/-1.1 oocytes/session; x+/-SEM) or in Experiment 2 between groups aspirated once, twice, or twice plus FSH treatment (7.7+/-1.8 vs 9.5+/-1.1 vs 6.2+/-1.1; P>0.10). In vitro development to the blastocyst stage was not different between the once, twice or twice-weekly aspiration plus FSH treatments or control oocytes obtained from cows at slaughter (23.1 vs 26.1 vs 18.0 vs 27.9%; P>0.10). Oocytes from the twice-weekly and twice-weekly plus FSH aspiration groups generated a higher percentage of Grade-1 quality embryos than the once-weekly group (P<0.05). In commercial bovine oocyte aspiration, more transferable embryos can be generated from twice-weekly aspirations than from once-weekly aspiration.  相似文献   

7.
To determine if deleterious effects of heat shock on embryos could be reduced in vitro by glutathione or taurine, morulae from superovulated cows were placed in modified Hams-F10 medium supplemented with 50 nM glutathione (GSH), 50 mM taurine or neither. Morulae were incubated for 2 hours at 38.5 degrees C, then at 42.0 degrees C (heat shock) or 38.5 degrees C for 2 hours and followed by incubation at 38.5 degrees C for 20 hours. Neither GSH nor taurine enhanced viability or blastocyst development at 38.5 degrees C. At 42.0 degrees C, however, GSH and taurine increased (P less than 0.02) viability (73%, 41% and 26% live for GSH, taurine and control); GSH increased (P less than 0.05) blastocyst development (55% for GSH vs. 30% for control). In conclusion, partial thermoprotection of bovine embryos from heat shock can be achieved in vitro by administration of GSH. Taurine is only slightly effective.  相似文献   

8.
Two experiments were conducted to assess the effects of environmental temperature and humidity on the quality and developmental capabilities of bovine oocytes. In Experiment 1, Bos taurus (Holstein and crossbred Angus) cows were subjected to 5 weekly sessions of ultrasound-guided follicle aspiration from February 16 through March 23 (cool season) and 5 sessions from May 22 through June 20 (hot season). In Experiment 2, Bos taurus (Holstein) and Bos indicus (Brahman) cows were superstimulated (Super-Ov) during the months of August (hot season) or January (cool season), and each cow was subjected to a single oocyte aspiration session. In each experiment, oocytes were classified as normal or abnormal based on ooplasm morphology and cumulus cell layers. In Experiment 1, oocytes classified as normal were in vitro matured and fertilized (IVM/IVF), and the resulting embryos cultured for 8 d. All oocytes recovered from superstimulated cows in Experiment 2 were matured and fertilized in vitro and the subsequent embryos cultured for 8 d, regardless of their morphological appearance. In Experiment 1, Bos taurus cows produced a higher (P = 0.02) percentage of normal oocytes during the cool season (75.9 +/- 8.0) than during the hot season (41.0 +/- 9.5). The percentage of fertilized oocytes developing to the 2-cell (82.4), 8-cell (65.4) and morula (46.6) stages were also greater (P < or = 0.06) during the cool season than the hot season (45.0, 21.2, 6.0 for 2-cell, 8-cell and morula stages, respectively). In Experiment 2, Bos taurus cows (Holstein) had a lower (P = 0.01) percentage of normal oocytes in the hot season (24.5 vs 80.0) and a lower (P < or = 0.003) percentage of fertilized oocytes developing to the 8-cell, morula and blastocyst stages. No difference (P > or = 0.57) in the percentage of normal oocytes or in embryo development was detected between seasons in Bos indicus (Brahman) cows. In conclusion, high environmental temperature and humidity resulted in a marked decline in the quality of oocytes retrieved from Bos taurus cows and markedly decreased their in vitro developmental capabilities. In contrast, a high percentage of oocytes retrieved from Bos indicus cows exhibited normal morphology and yielded a high proportion of blastocysts, regardless of season.  相似文献   

9.
Postweaning growth and reproductive traits were studied in 10 Brahman and 12 Angus bulls from 8 through 20 months of age. Brahman bulls reached puberty at 15.9 +/- .4 months of age, weighed 432 +/- 16 kg, had a scrotal circumference (SC) of 33.4 +/- 1.2 cm, and plasma testosterone of 3.96 +/- 1.03 ng/ml. Breed differences in SC averaged over the entire study were not significant. However, the breed x day interaction (BxD) (P<.01) showed that, initially, the Brahman SC was smaller than the Angus SC; however, by the end of the study, the Brahman SC was larger than the Angus. When SC was adjusted for body weight, breed differences (P<.01) and BxD (P <.01) for SC/body weight (BW) reflected the later age and heavier weight at which the Brahman bull reached puberty. Plasma testosterone differed between breeds (Angus > Brahman, P< .01) and increased at a linear (P< .01) rate with age. There was no BxD in plasma testosterone. No breed differences in sperm concentration were observed. However, other semen traits were different (P< .01), i.e., rate of forward movement, sperm motility, total abnormalities and semen volume. A BxD (P< .01) was also evident for breed differences in these semen traits. Sexual development of the Brahman bull occurred at a later chronological age and in a nonparallel pattern to that of the Angus. Between animal variation in SC within the Brahmans and differences between this study and other reports suggest that differences in SC exist for various populations of Brahman bulls and should provide opportunities for progress in selection for this trait.  相似文献   

10.
Timed embryo transfer (TET) using in vitro produced (IVP) embryos without estrus detection can be used to reduce adverse effects of heat stress on fertility. One limitation is the poor survival of IVP embryos after cryopreservation. Objectives of this study were to confirm beneficial effects of TET on pregnancy rate during heat stress as compared to timed artificial insemination (TAI), and to determine if cryopreservation by vitrification could improve survival of IVP embryos transferred to dairy cattle under heat stress conditions. For vitrified embryos (TET-V), a three-step pre-equilibration procedure was used to vitrify excellent and good quality Day 7 IVP Holstein blastocysts. For fresh IVP embryos (TET-F), Holstein oocytes were matured and fertilized; resultant embryos were cultured in modified KSOM for 7 days using the same method as for production of vitrified embryos. Excellent and good quality blastocysts on Day 7 were transported to the cooperating dairy in a portable incubator. Nonpregnant, lactating Holsteins (n = 155) were treated with GnRH (100 microg, i.m., Day 0), followed 7 days later by prostaglandin F2alpha (PGF2alpha, 25 mg, i.m.) and GnRH (100 microg) on Day 9. Cows in the TAI treatment (n = 68) were inseminated the next day (Day 10) with semen from a single bull that also was used to produce embryos. Cows in the other treatments (n = 33 for TET-F; n = 54 for TET-V) received an embryo on Day 17 (i.e. Day 7 after anticipated ovulation and Day 8 after second GnRH treatment). The proportion of cows that responded to synchronization based on plasma progesterone concentrations on Day 10 and Day 17 was 67.7%. Pregnancy rate for all cows on Day 45 was higher (P < 0.05) in the TET-F treatment than for the TAI and TET-V treatments (19.0 +/- 5.0,6.2 +/- 3.6, and 6.5 +/- 4.1%). For cows responding to synchronization, pregnancy rate was also higher (P < 0.05) for TET-F than for other treatments (26.7 +/- 6.4, 5.0 +/- 4.3, and 7.4 +/- 4.7%). In the TET-F treatment group, cows producing more milk had lower (P < 0.05) pregnancy rates than cows producing less milk. In conclusion, ET of fresh IVP embryos can improve pregnancy rate under heat stress conditions, but pregnancy rate following transfer of vitrified embryos was no better than that following TAI.  相似文献   

11.
The aim of the work was to study a potential relationship between acrosome response characteristics of bovine spermatozoa and their ability to fertilize oocytes and produce in vitro embryos. Sperm of artificial insemination bulls with a high rate (22.0 +/- 4.1%, group A, n = 7) or a low rate (10.3 +/- 4.1%, group B, n = 8) of embryos were used. For acrosome assessment, motile spermatozoa from a Percoll gradient were incubated with or without heparin and examined by the fix-vital sperm assay (FVSA). The differences between the heparin-treated (H+) and the non-treated (H-) spermatozoa were significant (p < 0.01) in all bulls at all tested intervals. According to the kinetics of the heparin response, the bulls fell into three categories: fast (FR, n = 7), moderate (MR, n = 5) or slow (SR, n = 3) acrosome responses (p < 0.01). Five MR bulls were found in group A in comparison with two MR bulls in group B (57.1 vs 12.5%; p < 0.05). Intensity of the acrosome response (response index) was significantly higher in bull group A compared with bull group B (7.0 vs 4.6, p < 0.01). A positive correlation was recorded between response index and embryo rate (r = 0.668, p < 0.01). In conclusion (a) the kinetics of spermatozoa response to heparin may be important for in vitro fertilization, bulls with a moderate response appearing to be most suitable for embryo production; (b) greater spermatozoa response to heparin was related to more effective embryo production.  相似文献   

12.
We investigated the effects of heat shock on developmental competence of bovine embryos and intracellular oxidative state. After in vitro fertilization, embryos were exposed to heat shock at 41 degrees C for 6 hr on days 0, 2, 4, and 6, respectively. On day 2, cleavage rate was not significantly different in all groups. However, the percentage of embryos developing to blastocyst stage after exposure to heat shock on day 0 (18.8 +/- 4.3%) and day 2 (23.6 +/- 3.7%) were significantly decreased compared with control (37.5 +/- 4.0%), day 4 (40.0 +/- 7.4%), and day 6 (38.1 +/- 2.0%). In addition, the total cell number of blastocysts was significantly decreased by heat shock on day 0 (107.5 +/- 6.6) and day 2 (112.8 +/- 5.7) compared with the control (143.2 +/- 9.4). To evaluate intracellular oxidative state by heat shock, embryos exposed to heat shock on days 0, 2, 4, and 6 were incubated with 2',7'-dichlorodihydrofluorescein diacetate (DCHFDA) and fluorescence of oxidized DCHFDA by reactive oxygen species (ROS) was detected under fluorescent microscope. The intensity of fluorescence was significantly increased when embryos were exposed to heat shock on days 0 and 2. However, heat shock on day 4 and day 6 did not increase the fluorescence intensity. These results indicate that (1) heat shock to earlier stage embryos causes a decrease in development to blastocysts and cell proliferation and (2) the decrease in development by heat shock could be involved in an increase of intracellular oxidative stress. Mol. Reprod. Dev. 67: 77-82, 2004.  相似文献   

13.
The authors sought to determine whether developmental differences in the magnitude of embryonic mortality caused by heat stress in vivo are caused by changes in resistance of embryos to elevated temperature. In this regard, responses of oocytes, two-cell embryos, four- to eight-cell embryos, and compacted morulae to heat shock were compared. An additional goal was to define further the role of cumulus cells and glutathione in thermoprotection of oocytes. In experiment 1, heat shock (41°C for 12 hr) decreased the number of embryos developing to the blastocyst stage for two-cell (26% vs. 0%) and four- to eight-cell (25% vs. 10%) embryos but did not affect morulae (37% vs. 42%). In experiment 2, exposure of two-cell embryos to 41°C for 12 hr reduced the number of four- to eight-cell embryos present 24 hr after the end of heat shock (88% vs. 62%). In experiment 3, heat shock reduced the number of two-cell embryos developing to blastocyst (49% vs. 8%) but did not affect subsequent development of oocytes when heat shock occurred during the first 12 hr of maturation (46% vs. 41% development to blastocyst); membrane integrity was not altered. In experiment 4, oocytes were cultured with an inhibitor of glutathione synthesis, DL-buthionine-[S,R]-sulfoximine (BSO), for 24 hr and exposed to 41°C for the first 12 hr of maturation. Percentages of blastocysts were 35% (39°C), 18% (41°C), 17% (39°C+BSO), and 11% (41°C+BSO). For experiment 5, oocytes were either denuded or left with cumulus intact and were then radiolabeled with [35S]methionine and [35S]cysteine at 39°C or 41°C for 12 hr. Exposure of oocytes to 41°C for 12 hr reduced overall synthesis of 35S-labeled TCA-precipitable intracellular proteins (18,160 vs. 14,594 dpm/oocyte), whereas presence of cumulus increased synthesis (9,509 vs. 23,246). Analysis by two-dimensional SDS PAGE and fluorography revealed that heat shock protein 68 (HSP68) and two other putative heat shock proteins, P71 and P70, were synthesized by all oocytes regardless of treatment. Heat shock did not alter the synthesis of HSP68 or P71 but decreased amounts of newly synthesized P70. Cumulus cells increased synthesis of P71 and P70. Results indicate there is a biphasic change in resistance to elevations in temperature as oocytes mature, become fertilized, and develop. Resistance declines from the oocyte to the two-cell stage and then increases. Evidence suggests a role for cumulus cells in increasing HSP70 molecules and protein synthesis. Data also indicate a role for glutathione in oocyte function. Mol Reprod Dev 46:138–145, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Induced thermotolerance is a phenomenon whereby exposure to a mild heat shock can induce heat shock proteins (HSP) and other cellular changes to make cells more resistant to a subsequent, more severe heat shock. Given that the 2-cell bovine embryo is very sensitive to heat shock, but can also produce HSP70 in response to elevated temperature, experiments were conducted to test whether 2-cell embryos could be made to undergo induced thermotolerance. Another objective was to test the role of the heat-inducible form of heat shock protein 70 (HSP70i) in development and sensitivity of bovine embryos to heat shock. To test for induced thermotolerance, 2-cell bovine embryos were first exposed to a mild heat shock (40 degrees C for 1 hr, or 41 degrees C or 42 degrees C for 80 min), allowed to recover at 38.5 degrees C and 5% (v/v) CO2 for 2 hr, and then exposed to a severe heat shock (41 degrees C for 4.5, 6, or 12 hr). Regardless of the conditions, previous exposure to mild heat shock did not reduce the deleterious effect of heat shock on development of embryos to the blastocyst stage. The role of HSP70i in embryonic development was tested in two experiments by culturing embryos with a monoclonal antibody to the inducible form of HSP70. At both 38.5 degrees C and 41 degrees C, the proportion of 2-cell embryos that developed to blastocyst was reduced (P < 0.05) by addition of anti-HSP70i to the culture medium. In contrast, sensitivity to heat shock was not generally increased by addition of antibody. In conclusion, bovine 2-cell embryos appear incapable of induced thermotolerance. Lack of capacity for induced thermotolerance could explain in part the increased sensitivity of 2-cell embryos to heat shock as compared to embryos at later stages of development. Results also implicate a role for HSP70i in normal development of bovine embryos.  相似文献   

15.
This study aims to investigate factors that affect the efficiency of blastocyst development and enhanced green fluorescence protein (EGFP) expression in porcine embryos following intracytoplasmic sperm injection (ICSI)-mediated DNA transfer. Frozen-thawed dead spermatozoa were exposed to different concentrations (0.01 microg/mL, 0.05 microg/mL or 0.1 microg/mL) of EGFP DNA solution, and then microinjected into in vitro matured oocytes. The optimal concentration for EGFP expression of resultant embryos was 0.05 microg/mL. When oocytes were microinjected on a warm stage at 30 degrees C, the percentage of EGFP-expressing embryos was higher than that at 38.5 degrees C (40.1% vs. 20.9%, P<0.01). The efficiency of EGFP expression in embryos following ICSI using linear EGFP DNA-exposed spermatozoa was higher than using circular DNA (40.8% vs. 28.2%, P<0.05). ICSI oocytes treated with 6-DMAP after electro-activation had a higher percentage of embryos expressing EGFP than those not treated (52.5% vs. 26.3%, P<0.01). However, neither incubation temperatures of spermatozoa and DNA (4 degrees C, 24 degrees C or 39 degrees C) nor BSA addition to the incubation medium affected the efficiency of producing EGFP-expressing embryos. Furthermore, treatment with DNase I after preincubation of sperm and DNA prevented the embryos from expressing EGFP. The EGFP expression of ICSI oocytes was affected neither by intracytoplasmic injection using sperm heads or whole spermatozoa, nor by washing of the sperm after preincubation. The above-mentioned factors did not affect embryonic developmental competence, apart from 6-DMAP treatment after electro-activation. In conclusion, most exogenous DNA molecules were tightly bound on the membranes of sperm head after incubation of DNA and sperm, and the temperature during ICSI, 6-DMAP treatment, exogenous DNA concentrations and constructs could significantly affect EGFP expression in porcine embryos following ICSI-mediated DNA transfer.  相似文献   

16.
One hundred and sixty-four beef heifers representing Angus, Brahman and their crosses were subjected to estrus synchronization treatment following evaluation of weight, body condition score and reproductive tract. Heifers were assigned to 1 of 2 methods of estrus detection, either visual observation for signs of standing estrus or a rump-mounted pressure-sensitive detection device. All heifers were artificially inseminated during a 25d insemination period and then bred by a bull. The effectiveness of estrus detection and timely insemination were evaluated by the type of detection method, breed and breeding event resulting in a pregnancy. Although there was not a significant difference in first service conception for method of detection, at the end of a 25-d insemination period, 60.5% of the visually observed heifers were pregnant, while only 45.8% of the heifers detected by the mount detection device were pregnant (P = 0.05). The reduced 25-d conception rate in the pressure-sensitive detection group suggested that insemination of detected heifers may not have been optimal for pregnancy. The mean time to estrus after implant removal and the time of insemination were evaluated. Heifers pregnant at the first service had a shorter time to estrus (32.11 +/- 1.6 h, P=0.13), a longer mean interval from the start of estrus to insemination (12.10 +/- 1.2 h, P = 0.16) and a positive mean interval between the end of standing estrus and the time of insemination (3.17 +/-1.7 h, P=0.19) than heifers not conceiving at the synchronized estrus (38.5 +/- 2.1, 7.42 +/- 1.9 h and -2.04 +/- 2.1 h, respectively). Breed differences were observed in estrus durations (Angus 8.52 +/- 1.2 h, Brahman 6.65 +/- 1.2 h, crossbred 11.90 +/- 1.2 h; P = 0.03), number of mounts (19 +/- 3.6, 25 +/- 5.4, 37 +/- 5.5, respectively; P=0.02) and gestation length (281 +/- 1.2, 291 +/- 1.8, 286 +/- 1.1 d, respectively; P = 0.001).  相似文献   

17.
This study was conducted to investigate the possibility of using bovine oocytes for a heterologous fertility test by intracytoplasmic sperm injection (ICSI) and to compare the pronuclear formation of ram, bull and minke whale spermatozoa after injection into bovine oocytes. Bovine oocytes were cultured in vitro for 24 h and those with a polar body were selected for ICSI. Frozen-thawed semen from the three species were treated with 5 mM dithiothreitol for 1 h and spermatozoa were killed by storing them in a -20 degrees C refrigerator before use. ICSI was performed using a Piezo system. Three experiments were designed. In experiment 1, a higher (p < 0.05) male pronuclear formation rate was found in the oocytes injected with ram (52.6%) or bull (53.4%) spermatozoa than with minke whale spermatozoa (39.1%). In experiment 2, sperm head decondensation was detected at 2 h after ICSI in the oocytes injected with a spermatozoon of each species. Male pronuclei were first observed at 4 h in the oocytes injected with ram or bull spermatozoa and at 6 h in oocytes injected with minke whale spermatozoa. The mean diameters of male pronuclei derived from both whale and bull spermatozoa were larger than those from ram spermatozoa (30.4 microm and 28.3 microm vs 22.4 microm, p < 0.005). The mean diameter of female pronuclei in the oocytes injected with whale spermatozoa was also larger than with ram spermatozoa (29.3 microm vs 24.7 microm, p < 0.05). The development of male and female pronuclei was synchronous. In experiment 3, ethanol-activated oocytes injected with a spermatozoon from any of the three species achieved significantly higher (p < 0.05-0.001) cleavage rates than control oocytes. Blastocyst formation was only observed when bull spermatozoa were used. The results of this study indicate that dead foreign spermatozoa can participate in fertilisation activities in bovine oocytes after ICSI.  相似文献   

18.
Insulin-like growth factor-I (IGF-I) is a survival factor for preimplantation mammalian embryos exposed to stress. One stress that compromises preimplantation embryonic development is elevated temperature (i.e., heat shock). Using bovine embryos produced in vitro as a model, it was hypothesized that IGF-I would protect preimplantation embryos by reducing the effects of heat shock on total cell number, the proportion of blastomeres that undergo apoptosis, and the percentage of embryos developing to the blastocyst stage. In experiment 1, embryos were cultured with or without IGF-I; on Day 5 after insemination, embryos >or=16 cells were cultured at 38.5 degrees C for 24 h or were subjected to 41 degrees C for 9 h followed by 38.5 degrees C for 15 h. Heat shock reduced the total cell number at 24 h after initiation of heat shock and increased the percentage of blastomeres that were apoptotic. Effects of heat shock were less for IGF-I-treated embryos. Experiment 2 was conducted similarly except that embryos were allowed to develop to Day 8 after insemination. The percentage reduction in blastocyst development for heat-shocked embryos compared with those maintained at 38.5 degrees C was less for embryos cultured with IGF-I than for control embryos. Heat shock reduced the total cell number in blastocysts and increased the percentage of blastomeres that were apoptotic, whereas IGF-I-treated embryos had increased total cell number and a reduced percentage of apoptosis. Taken together, these results demonstrate that IGF-I can serve as a survival factor for preimplantation bovine embryos exposed to heat shock by reducing the effects of heat shock on development and apoptosis.  相似文献   

19.
Exposure of oocytes to elevated temperature (i.e. heat shock) during maturation can reduce fertilization rate and development of the resultant embryos. Given the possible role of free radicals in actions of heat shock on cellular function, we tested the hypothesis that a high oxygen environment exacerbates the magnitude of deleterious effects of heat shock on in vitro maturation of bovine oocytes. A preliminary experiment was performed to establish conditions for oocyte maturation that would be independent of oxygen concentration. Oocytes were matured in a modified tissue culture medium-199 (mTCM-199) or modified synthetic oviduct fluid (mSOF) containing 5.6 or 20 mM glucose and under either high (atmospheric oxygen, approximately 21%, v/v) or low oxygen (5%, a value approximating oxygen content of the follicle). For oocytes matured in mTCM-199, development was greater in high oxygen than in low oxygen, whereas development was unaffected by oxygen using mSOF (mediumxoxygen, P<0.05). Accordingly, mSOF was used as the maturation medium in a second study to test the effect of oxygen concentration on the magnitude of actions of heat shock during maturation. Maturation was at 38.5 degrees C for 22 h (control) or 41 degrees C for 12h and 38.5 degrees C for 10h (heat shock). Heat shock slightly decreased cleavage rate, regardless of the maturation conditions, and decreased blastocyst development under all maturation conditions except for the group matured under high oxygen and high glucose (temperature x glucose for oocytes under low oxygen, P<0.05). The percentage of oocytes becoming blastocysts for control and heat shocked oocytes was 25.9% versus 22.5% (low oxygen -- 5.6 mM glucose), 41.6% versus 34.9% (low -- 20 mM), 41.7% versus 35.0% (high -- 5.6 mM), and 37.6% versus 37.5% (high -- 20 mM). In conclusion, under an oxygen tension that approached physiological conditions, heat shock during in vitro maturation reduced oocyte competence for fertilization and subsequent development.  相似文献   

20.
Efficient and dependable mouse cryopreservation methods are urgently needed because the production of mice with transgenes and disrupted and mutant genes is now commonplace. Preservation of these unique genomes provides an essential safeguard for future research. Unfortunately, mouse spermatozoa appear more vulnerable to freezing than other species, e.g., bovine and human. In this study, we examined the efficiency of intracytoplasmic sperm injection (ICSI) and in vitro fertilization (IVF) in generating embryos from mouse spermatozoa frozen with 18% raffinose and 3% skim milk for cryoprotection. A comparison was made between the inbred strain C57BL/6J, commonly used in mutagenic and transgenic studies, and a hybrid strain B6D2F1 (C57BL/6J x DBA/2J). C57BL/6J spermatozoa are known to be more sensitive to freezing than B6D2F1. Fertilization of oocytes after IVF was significantly lower with C57BL/6J spermatozoa when compared with B6D2F1 spermatozoa for both fresh and frozen spermatozoa (fresh, 89 vs. 55%; frozen, 56 vs. 9%). Freezing also reduced the fertility of B6D2F1 spermatozoa (89 vs. 56%). Fertilization improved dramatically after ICSI with fresh and frozen C57BL/6J spermatozoa (90 and 85%) and also with frozen B6D2F1 spermatozoa (87%). The development of two-cell embryos to the blastocyst stage was lower for C57BL/6J than B6D2F1 (42-61% and 84-98%) in all treatments but similar for embryos within each strain. The normality of chromosomes from fresh and frozen spermatozoa was assessed in oocytes prior to first cleavage. The majority of oocytes had normal chromosomes after IVF (98-100%) and ICSI (87-95%), indicating that chromosomal abnormalities were not responsible for the poorer development in vitro of C57BL/6J embryos. In conclusion, our data show that ICSI is a more efficient and effective technique than IVF for generating embryos from frozen spermatozoa. More important, ICSI is especially valuable for strains where IVF with fresh spermatozoa produces few or no embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号