首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pituitary tumor GH3 cells synthesize and secrete both growth hormone (GH) and prolactin (PRL). Morphological and functional changes of GH3 cells induced by epidermal growth factor (EGF, 10 nM), insulin (300 nM), and estradiol-17beta (E2, 1 nM) were studied. Treatment of cultures of GH3 cells for 6 days with EGF, insulin, or E2 alone, and with EGF plus E2 did not affect the total number of GH3 cells, but a combination of EGF, insulin, and E2 decreased the total number of GH3 cells compared with control treatment. DNA-synthesizing cells were detected by monitoring 5-bromo-2'-deoxyuridine (BrdU) uptake. EGF, E2, or a combination of EGF, insulin, and E2 significantly decreased the proportion of BrdU-labeled cells (21.1+/-1.7%, 21.0+/-1.4%, 18.2+/-1.3%; P<0.05, P<0.05, P<0.01, respectively) compared with control treatment (28.6+/-1.5%), but insulin did not (31.4+/-2.4%). Immunocytochemical analysis of GH3 cells cultured in 5% fetal calf serum-supplemented medium (control) showed that about 70% of all GH3 cells were GH-immunoreactive cells (GH-ir cells), apparently containing only GH, and 14% were mammosomatotrophs (MS cells), containing both GH and PRL, while PRL-immunoreactive cells (PRL-ir cells), containing only PRL, were not detected. No GH or PRL immunoreactivity could be detected in the remaining cells (15%). EGF decreased the proportion of GH-ir cells. The effects of EGF were enhanced by simultaneous exposure to insulin and E2; this decreased the proportion of GH-ir cells to about 20% of the total GH3 cells and significantly increased the proportion of MS cells to 300% of controls. Treatment with EGF plus insulin, EGF plus E2, or a combination of EGF, insulin, and E2 all stimulated the appearance of PRL-ir cells. Exposure to EGF caused a significant decrease in GH mRNA (P<0.01) and a significant increase in PRL mRNA (P<0.05). These observations suggest that EGF is closely involved in differentiation of PRL-ir cells from GH-ir cells via MS cells in GH3 cell cultures. Cytosine arabinoside (10(-7) M), an inhibitor of cell division, did not affect the changes in proportion of the three cell types induced by treatment with a combination of EGF, insulin, and E2. It is therefore probable that the transdifferentiation does not require mitosis of the GH3 cells.  相似文献   

2.
The newly established rat pituitary cell line, MtT/S, has pituitary somatotroph (growth hormone-producing cell)-like characteristics, i.e., the cells produce growth hormone (GH), possess GH-immunopositive secretory granules, and respond to GH-releasing hormone. When MtT/S cells were cultured in regular medium no prolactin (PRL) cells were observed and PRL was not detected, by radioimmunoassay or Western blot analysis, in the medium or the cells. However, GH production and the GH cell population decreased markedly when the cells were incubated with insulin or insulin-like growth factor-1 (IGF-1). After stimulation with insulin or IGF-1 there was a 2-day lag period, then some PRL was detected in the medium; after 5 days a number of PRL cells appeared. Double immunocytochemistry indicated clearly that no cell contained both PRL and GH. These results show that insulin and IGF-1 stimulate conversion of MtT/S cell line GH cells to PRL cells. This suggests that the MtT/S cell line is an excellent model system which shows the GH-cell/PRL-cell lineage.  相似文献   

3.
In this report the occurrence of mammosomatotroph (MS) cells was correlated with changes in the somatotroph population of adult rat pituitary gland submitted to various experimental conditions (ovariectomized, orchidectomized and intact males, and after treatment with oestradiol benzoate). Cell and volume density of somatotrophs were assessed in sections stained with the immunogold-silver enhancement technique. Mammosomatotrophs were identified by double immunogold labelling at the electron microscopic level. Colocalization of prolactin (PRL) and growth hormone (GH) in the same cell was rarely observed. Only a few MS cells (0.1–0.2% of all parenchymal cells) were found in some experimental models. Oestrogen treatment decreased both cell and volume density of somatotrophs in ovariectomized rats. In this model, serum GH increased significantly but no changes in the pituitary content of the hormone were observed. Our results demonstrate that MS cells are an uncommon cell type in the pituitary of adult ovariectomized, orchidectomized and intact male rats. The oestrogen treatment, which is well known to induce proliferation of lactotrophs, has no effects on the MS population. Data presented in this report do not support the suggested role for mammosomatotrophs as transitional cells in the presumptive interconversion of PRL and GH producing cells.  相似文献   

4.
Transforming growth factor-alpha (TGF-alpha), a member of the epidermal growth factor (EGF) family, is produced within the mouse anterior pituitaries. However, the cell types of TGF-alpha-expressing cells and the physiological roles of TGF-alpha within mouse pituitary glands remain unclear. The aim of the present study was to localize TGF-alpha mRNA-expressing cells, and to clarify the involvement of TGF-alpha in estrogen-induced DNA replication in mouse anterior pituitary cells. Northern blot analysis demonstrated TGF-alpha mRNA expression in adult male and female mouse anterior pituitaries. In situ hybridization analysis of the pituitaries in these mice showed that TGF-alpha mRNA-expressing cells in the anterior pituitary are round, oval, and medium-sized. TGF-alpha mRNA was colocalized in most of the growth hormone (GH) mRNA-expressing cells, while only some of the prolactin (PRL) mRNA-expressing cells. DNA replication in the anterior pituitary cells was detected by monitoring the cellular uptake of a thymidine analogue, bromodeoxyuridine (BrdU) in a primary serum-free culture system. Estradiol-17beta (E2) and TGF-alpha treatment increased the number of BrdU-labelled mammotrophs, indicating that E2 and TGF-alpha treatment stimulates the DNA replication in mammotrophs. Immunoneutralization of TGF-alpha with anti-TGF-alpha-antibodies nullified the E2-induced increase in DNA replication. RT-PCR analysis of TGF-alpha mRNA expression in ovariectomized female mice revealed that E2 increases TGF-alpha mRNA levels. These results indicate that the TGF-alpha produced primarily in the somatotrophs mediates the stimulatory effects of estrogen on the DNA replication of pituitary cells in a paracrine or autocrine manner.  相似文献   

5.
Interspecific somatic cell hybrid clones have been isolated and characterized in order to study growth hormone (GH) and prolactin (PRL) gene expression. Rat pituitary tumor cells (GH3, 69 chromosomes) secreting rat GH and PRL were grown for 48 h together with nonhormone secreting, aminopterin-sensitive murine fibroblast cells (LMTK-, 55 chromosomes) and fused using polyethylene glycol. Resultant heterokaryons were selected in hypoxanthine-aminopterin-thymidine (HAT) medium and cloned. Five clones produced rat GH and PRL. Hormone-producing hybrids morphologically resembled the mouse parent fibroblast. Hybrids grew in monolayers and contained 80-142 chromosomes, and marker chromosomes for both rat (small submetacentric) and mouse (bi-armed and large true metacentric) were identified. The interspecific nature of the hybrids was further confirmed by the presence of both rat and mouse adenosine deaminase and superoxide dismutase isozymes. Using specific antisera and indirect immunoperoxidase staining, both hybrid clones and GH3 rat parental cells stained positively for rat GH and PRL, while the murine fibroblast parental cells were negative. Hormone production by the hybrids has been sustained for over twenty subcultures; secretion rates were initially 150 ng PRL and 321 ng GH/10(6) cells/24 h and are currently 100 ng PRL and 90 ng GH/10(6) cells/24 h. Parental GH3 rat cells secreted 720 ng PRL and 660 ng GH/10(6) cells/24 h. Exposure of hybrids to KCl (50 mM) resulted in acute stimulation of rat PRL, but not rat GH release, and long-term incubation with thyrotropin-releasing hormone (TRH, 80 nM) stimulated PRL secretion. Hormone-dependent modulation of PRL secretion was transferred to the hybrid cell thus enabling the model to be used in studying regulation of PRL gene expression.  相似文献   

6.
PRL storage in GH4C1 cells, rat pituitary tumor cells, can be induced by treatment with a combination of estradiol, epidermal growth factor, and bovine insulin. This increase in storage is characterized by a preferential increase in intracellular PRL compared with secreted PRL and a 50-fold increase in the number of secretory granules. Treatment with the combined hormones stimulates PRL synthesis approximately 6-fold, but this effect is not sufficient to increase PRL storage, because epidermal growth factor alone increases PRL synthesis to the same extent without affecting storage. The cDNA for human proinsulin down-stream of the RSV-LTR promoter was transfected into GH4C1 cells to determine whether storage of another protein known to be targeted to the regulated pathway would also increase with hormone treatment. Proinsulin and PRL release were stimulated over the same time course and to the same peak height, compared to basal release, by both KCl and TRH, indicating that proinsulin is targeted to the regulated pathway in GH4C1 cells. There was little intracellular processing of proinsulin to insulin. Proinsulin synthesis increased 3.9-fold with the combined treatment, assessed by accumulation of proinsulin immunoreactivity in the medium and increases at the mRNA level. Treatment with the combined hormones did not cause the preferential increase in intracellular proinsulin that occurred with PRL; the increase in intracellular proinsulin could be accounted for primarily by effects on synthesis. These results suggest that storage of the two hormones can be differentially regulated.  相似文献   

7.
Growth hormone (GH), prolactin (PRL), and mammosomatotrope (MS) cells of gilthead sea bream, Sparus aurata, a teleost fish, were studied in specimens from hatching to 15 months (adults) using conventional electron microscopy and an immunogold method using anti-tilapia GH sera and anti-chum salmon PRL serum. MS cells, immunoreactive to both anti-GH sera and anti-PRL sera, had been first identified in fish in a previous study in newly hatched larvae and in older larvae and juvenile specimens of Sparus aurata by light microscopic immunocytochemistry. In the present work, MS cells reacted positively to immunogold label only in older larvae and juveniles and their secretory granules immunoreacted with both GH and PRL antisera or with only one of them. MS cells were ultrastructurally similar to the PRL cells, with which they coincided in time. This is the first report on the ultrastructural characterization of MS cells in fish. In adults, the secretory granules of GH cells (immunoreactive to anti-GH serum) were mainly round, of variable size, and had a homogeneous, highly electron-dense content. Irregularly shaped secretory granules were also present. PRL cells (immunoreactive to anti-PRL serum) were usually observed in a follicular arrangement; they showed few, small, and mainly round secretory granules with a homogeneous and high or medium electron-dense content. Some oval or elongated secretory granules were also observed. GH and PRL cells that showed involutive features were also found. In newly hatched larvae, GH, PRL, and MS cells could not be distinguished either by their ultrastructure or by the immunogold labeling of the secretory granules. In 1-day-old larvae, presumptive GH and PRL cells were observed according to their position in the pituitary gland. In 2-day-old larvae, a few cells showed some of the ultrastructural features described for GH and PRL cells of adults. During development, the number, size, and shape of the secretory granules in both cell types clearly increased and the organelles developed gradually. Some GH cells were found undergoing mitosis.  相似文献   

8.
GH4C1 cells are a rat pituitary tumor cell strain in which the level of cellular prolactin (PRL) and PRL-containing secretory granules can be regulated by hormone treatment. The chromogranins/secretogranins (Sg) are a family of secretory proteins which are widely distributed in the secretory granules of endocrine and neuronal cells. In the present study, we investigated in GH4C1 cell cultures the regulation of the cell content of the Sg by immunoblotting and the relationship between the storage of Sg I and Sg II and PRL by double immunocytochemistry. GH4C1 cells grown in the presence of gelded horse serum, a condition in which these cells contain a low level of secretory granules, contained low levels of PRL, Sg I, and Sg II. Treatment of GH4C1 cells with a combination of 17 beta-estradiol, insulin, and epidermal growth factor for 3 days, known to induce a marked increase in the number of secretory granules, increased the cell contents of PRL, Sg I, and Sg II. To determine whether the induction of PRL was morphologically associated with that of the Sg, the distribution of PRL and the Sg was determined by double immunofluorescence microscopy. After hormone treatment, 54% of cells showed positive PRL immunoreactivity, fluorescence being extranuclear and consistent with staining of the Golgi zone and secretory granules. Forty-six percent of PRL-positive cells stained coincidently for Sg I, while 72% of the PRL cells were also reactive with anti-Sg II. To determine whether PRL storage was associated with storage of at least one of the Sg, cells were stained with anti-PRL and anti-Sg I and anti-Sg II together. Eighty-six percent of PRL cells stained for one or the other of the Sg. Therefore, PRL storage in GH4C1 cell cultures is closely but not completely associated with the storage of Sg I and/or II.  相似文献   

9.
M Tomida  U Yoshida  C Mogi  M Maruyama  H Goda  Y Hatta  K Inoue 《Cytokine》2001,14(4):202-207
The rat pituitary cell line, MtT/SM, has the characteristics of somatomammotrophs. The cells secrete both prolactin (PRL) and growth hormone (GH). We examined the effects of cytokines such as leukaemia inhibitory factor (LIF), interleukin 6 (IL-6), oncostatin M and interleukin 11 on the secretion of these hormones by the cells. These cytokines stimulate proliferation of the cells and inhibit the secretion of PRL by 70-80% and that of GH by 50%. They induce tyrosine phosphorylation of STAT3 in the cells. The cells containing PRL or GH decreased at 48 h after treatment of the cells with LIF or IL-6. These results suggest that the LIF/IL-6 family of cytokines inhibits the functions of mammotrophs and somatotrophs in the pituitary gland.  相似文献   

10.
11.
Inhibitory effects of cysteamine on neuroendocrine function   总被引:1,自引:0,他引:1  
The action of cysteamine on anterior pituitary hormone secretion was studied in vivo using conscious, freely moving male rats and in vitro using anterior pituitary cells in monolayer culture. Administration of 500 micrograms cysteamine into the lateral cerebral ventricles of normal rats caused the complete inhibition of pulsatile GH secretion for a minimum of 6 h. This treatment also significantly decreased plasma concentrations of LH for at least 6 h in orchiectomized rat, TSH in short-term (0.5 month) thyroidectomized rats, and PRL in long-term (6 months) thyroidectomized rats. The in vivo stimulation of GH, LH, TSH and PRL with their respective releasing hormones 60 min after administration of cysteamine was not different from the response observed in rats pretreated with saline except for PRL where cysteamine pretreatment significantly inhibited the expected PRL increase. In vitro, 1 mM cysteamine decreased basal and TRH stimulated PRL release while not affecting basal or stimulated GH, LH, TSH and ACTH secretion. These data demonstrate the dramatic and wide-ranging effects of cysteamine on anterior pituitary hormone secretion. This action appears to be mediated through hypothalamic pathways for GH, LH and TSH and through a pituitary pathway for PRL.  相似文献   

12.
Incubation behavior or broodiness in turkey hens is characterized by ovarian regression, hyperprolactinemia, and persistent nesting. Nest-deprivation of incubating turkey hens results in disruption of broodiness accompanied by a precipitous decline in plasma prolactin (PRL) concentrations. The objective of the present study is to examine cellular changes in the pituitary gland associated with nest-deprivation for 0, 1, 2, 3, 4, or 7 days. Bromodeoxyuridine (BrdU) was administered prior to kill to study proliferative activity. Pituitary tissue sections were immunostained using turkey growth hormone (GH) antibody, and/or chicken PRL peptide antibody, and BrdU antibody. Plasma PRL concentrations declined significantly following nest-deprivation for 1 or more days. The midsagittal pituitary area immunoreactive (ir) to GH was significantly increased while that of PRL was significantly decreased following nest-deprivation for 2 or more days. Terminal deoxy-UTP nick end labeling and PRL-immunostaining revealed an abundance of apoptotic nuclei in both cephalic and caudal lobes of the anterior pituitary gland, suggestive of programmed cellular death of lactotrophs in the pituitary gland of hens nest-deprived for 2 or more days. Mammosomatotrophs were abundant in hens nest-deprived on Day 0 but were absent in hens nest-deprived for 1 or more days. Proliferating (BrdU-ir) cells were significantly abundant in the pituitary cephalic and caudal lobes following nest-deprivation for 1 or more days but were absent on Day 0 or in laying hens. Dual-labeling studies indicated that most of the BrdU-ir nuclei in the caudal lobe were not colocalized in somatotrophs in hens nest-deprived for 1-4 days but did colocalize with GH following 7 days of nest-deprivation. In conclusion, nest-deprivation of incubating turkey hens results in 1) a precipitous decline in plasma PRL concentration, 2) programmed cell death of lactotrophs, 3) disappearance of mammosomatotrophs, 4) increased proliferative activity of pituitary cells, and 5) recruitment of somatotrophs arising primarily from mitosis of nonsomatotrophic cells.  相似文献   

13.
Recently, ghrelin (Ghr), a new peptide which specifically stimulates growth hormone (GH) release from the pituitary, was identified in the rat and human stomach. Ghrelin has been shown to stimulate GH release by acting through a growth hormone secretagogue (GHS) receptor in the rat. The present study describes the in vitro effect of rat Ghr on the release of GH and two forms of prolactin (PRL(177) and PRL(188)) in the tilapia, Oreochromis mossambicus. Rat Ghr stimulated the release of GH in a dose-related manner after 8 and 24 hr of incubation. Rat Ghr also significantly stimulated the release of PRL(177) and PRL(188) in a dose-related manner after 24 hr. Rat Ghr had no effect on the pituitary content of GH or PRL(188), but significantly increased PRL(177) content. These results show for the first time that rat Ghr significantly stimulates GH and PRL release in teleosts, and suggest that Ghr and a GHS receptor are present in fish.  相似文献   

14.
The onset of maternal behavior at parturition in rats is hormonally regulated. Recently, we reported that treatment of behaviorally inexperienced, hypophysectomized (hypox), ovariectomized (ovx) rats with a sequential steroid treatment of progesterone (P) and estradiol (E2), and either ectopic anterior pituitary grafts or prolactin (PRL), stimulated maternal responsiveness toward foster young. That growth hormone (GH) has a number of PRL-like activities led us to ask whether the actions of PRL on maternal behavior were specific to PRL or might be shared by other PRL-like protein hormone, i.e., GH. In Experiment 1 we quantified plasma concentrations of GH and PRL by RIA in groups of hypox female rats that were ovariectomized and treated with a combination of ectopic pituitary grafts (Days 1-23) and Silastic capsules filled with P (Days 1-11) and E2 (Days 11-23). Blood samples were collected from Days 1 to 23 of treatment. Both plasma PRL and GH levels increased after grafting, initially rising 10- to 60-fold by Day 4 and gradually declining throughout the remainder of the 23-day sampling period. Throughout the 3-week period after grafting plasma GH levels were as high or higher than those of PRL. In Experiment 2 the behavioral effects of exogenously administered ovine (o)-GH were measured in groups of hypox, ovx rats that were treated with P and E2 as in Experiment 1. Experimental rats were injected twice daily with 0.25 mg oGH beginning on Day 1. Testing for maternal behavior toward foster young was conducted daily from Day 12 to Day 22. In steroid-treated rats, GH treatment stimulated a more rapid onset of maternal behavior (latencies of 3 vs greater than 10 days for vehicle-injected controls). These data indicate that GH, like PRL, is secreted by ectopic pituitary grafts and is capable of stimulating maternal behavior.  相似文献   

15.
There have been no studies in any vertebrate that have localized insulin-like growth factor (IGF)-I receptors in prolactin (PRL) cells or that have correlated pituitary binding to the potency of IGF-I in regulating both PRL and growth hormone (GH) secretion. We show that IGF-I binds with high affinity and specificity to the pituitary gland of hybrid striped bass (Morone saxatilis x M. chrysops). IGF-I and IGF-II were equipotent in inhibiting saturable (125)I-IGF-I binding, whereas insulin was ineffective. IGF-I binds with similar affinity to the rostral pars distalis (>95% PRL cells) as the whole pituitary gland and immunohistochemistry colocalizes IGF-I receptors and PRL in this same region. Des(1-3)IGF-I, a truncated analog of IGF-I that binds with high affinity to IGF-I receptors but weakly to IGF-I binding proteins (IGFBPs), showed a similar inhibition of saturable (125)I-IGF-I binding, but it was more potent than IGF-I in stimulating PRL and inhibiting GH release. These results are the first to localize IGF-I receptors to PRL cells, correlate IGF-I binding to its efficacy in regulating GH and PRL secretion, as well as demonstrate that IGFBPs may play a significant role in modulating the disparate actions of IGF-I on PRL and GH secretion.  相似文献   

16.
Estradiol (E2) stimulates not only secretion of prolactin (PRL) and proliferation of PRL-producing cells (PRL cells) in the anterior pituitary, but also the expression of growth factors. In insulin-like growth factor-I (IGF-I) knockout (KO) mice, the number of PRL cells is decreased and administration of IGF-I does not increase either the number of PRL cells or plasma PRL levels, indicating that IGF-I plays a pivotal role in PRL cells. The effect of E2 on PRL cells in KO mice was investigated by immunohistochemistry and real-time RT-PCR. The number of PRL cells in KO mice was significantly lower than in the wild-type (WT) control mice. E2 increased the PRL mRNA in WT and KO mice; however, an increase of PRL mRNA in KO was less than that in WT. In addition, no vasoactive intestinal peptide (VIP)-immunoreactive cells were found in KO mice, therefore IGF-I is essential for VIP expression. To investigate the roles of IGF-I on PRL cells in the postnatal development, double-immunostaining with PRL and BrdU was performed in WT and KO mice from days 5–20. The percentages of PRL cells and BrdU-labeled cells in the anterior pituitary of KO mice were lower than in WT mice. Thus, IGF-I may be responsible for proliferation and differentiation of PRL cells in this postnatal period. Differentiation and the proliferation of PRL cells are controlled by IGF-I during the postnatal development, and IGF may be a mediator of E2 action through VIP induction in PRL cells of adults.  相似文献   

17.
18.
This study was designed to examine whether mammosomatotroph cells (MS cells) can be easily detected using confocal laser scanning microscopy (CLSM) and whether the coexistence of growth hormone (GH) and prolactin (PRL) within the same secretory granule can be identified in the MS cell using CLSM. Conventional epoxy resin-embedded tissues of mixed GH- and PRL-secreting human pituitary adenomas were used for this double-labelling immunofluorescent study by CLSM. A semithin section of the tissue after plastic removal and bleaching was immunohistochemically double-stained with primary antibodies against GH and PRL, followed by secondary antibodies conjugated with Rhodamine (GH) and FITC (PRL). MS cells simultaneously showing fluorescence of both Rhodamine and FITC were easily detected by CLSM at lower magnification. At higher magnification, the coexistence of Rhodamine and FITC on the same secretory granule was identified by using a superimposed display. This finding was confirmed by immunoelectron microscopy. The CLSM technique may be useful for the study of MS cells.  相似文献   

19.
Of the various animal models used to study chronic hyperprolactinemia, the otherwise intact rat implanted with extra anterior pituitary glands (AP) under the kidney capsule is assumed to be normal except for excess circulating prolactin (PRL). Since the ectopic glands contain numerous somatotropes in addition to abundant and active lactotropes, it was important to assess growth hormone (GH) secretion as well in this model of hyperprolactinemia. The structural and functional similarities of PRL and GH are such that it is necessary to demonstrate that metabolic abnormalities noted in AP-implanted rats are due to hyperprolactinemia and not to altered GH secretion. AP-implanted female rats have significantly higher resting serum PRL concentrations when compared to sham-operated control rats, but baseline serum GH levels are similar in normal and pituitary-grafted rats. Suppression of GH by insulin and clonidine is comparable in AP-implanted and control rats. The intrasellar pituitary GH concentration is also similar (ca. 20 μg/mg wet weight) in hyperprolactinemic and normal rats. We conclude that GH secretion is normal in the non-hypophysectomized AP-implanted rat, in contrast to the hypophysectomized AP-implanted rat model which has been reported to have diminished GH secretion. Despite the presence of recognizable somatotropes, the ectopic anterior pituitary does not appear to secrete significant amounts of GH, making the intact rat bearing multiple pituitary grafts an excellent model of chronic hyperprolactinemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号