首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
While the fluorescence decay kinetics of tyrosine model compounds [Laws, W. R., Ross, J. B. A., Wyssbrod, H. R., Beechem, J. M., Brand, L., & Sutherland, J. C. (1986) Biochemistry 25, 599-607] and the tyrosine residue in oxytocin [Ross, J. B. A., Laws, W. R., Buku, A., Sutherland, J. C., & Wyssbrod, H. R. (1986) Biochemistry 25, 607-612] can be explained in terms of heterogeneity derived from the three ground-state chi 1 rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from chi 2 rotations. In this paper, the time-resolved and steady-state fluorescence properties of [tryptophan2]oxytocin at pH 3 are presented and compared with 1H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength and a global analysis of these decay curves for common emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the 1H NMR-determined chi 1 rotamer populations of the indole side chain. 15N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the chi 1 rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two chi 2 populations. Depending upon the degree of correlation between chi 2 and chi 1, there may be from three to six side-chain conformations for the tryptophan residue. The combined fluorescence and NMR results are consistent with a rotamer model in which either (i) the chi 2 rotations are fast compared to the fluorescence intensity decay of the tryptophan residue, (ii) environmental factors affecting fluorescence intensity decay properties are dominated by chi 1 interactions, or (iii) the chi 2 and chi 1 rotations are highly correlated.  相似文献   

2.
The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. In aqueous solution, the peptides are unstructured and a triple-exponential function is required to fit the decay data. Association of the peptides with small unilamellar vesicles composed of egg phosphatidylcholine reduces the complexity of the fluorescence decays to a double exponential function, with a reduced dependence of the preexponential amplitude on peptide sequence. The data are interpreted in terms of a rotamer model in which the modality and relative proportions of the lifetime components are related to the population distribution of tryptophan chi1 rotamers about the Calpha-Cbeta bond. Peptide secondary structure and the disposition of the tryptophan residue relative to the lipid and aqueous phases in the peptide-lipid complex affect the local environment of tryptophan and influence the distribution of side-chain rotamers. The results show that measurement of the temporal decay of tryptophan emission provides a useful adjunct to other biophysical techniques for investigating peptide-lipid and protein-membrane interactions.  相似文献   

3.
The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. In this study we carried out fluorescence measurements of the tryptophan residue of cyclic enkephalin analogues of a general formula X-c[D-Dab(2)-Gly(3)-Trp(4)-Y(5)] where X = Cbz or H and Y = D- or L-Leu, in four solvents [water, methanol, acetonitrile, and dimethyl sulfoxide (DMSO)]. An analysis of the tryptophan fluorescence decays using a discrete-exponential model indicates that tryptophan fluorescence decay can be described by a double exponential function in all solvents studied. Lifetime distribution analysis yields a bimodal distribution in protic solvents (water and methanol), whereas an asymmetric, unimodal distribution in an aprotic solvent (DMSO) and uni- or bimodal distributions in acetonitrile solution, depending on leucine configuration. The data are interpreted in terms of the rotamer model, in which the modality and the relative proportions of the lifetime components are related to the population distribution of tryptophan chi(1) rotamers about the C(alpha)--C(beta) bond. The chirality of the Leu(5) residue and solvent properties affect the local environment of the tryptophan residue and therefore influence the distribution of side-chain rotamers. These results are consistent with the results of theoretical conformational calculations.  相似文献   

4.
The time-resolved fluorescence emission characteristics of the single tryptophan residue (Trp-59) of horse heart apocytochrome c--the precursor of the intramitochondrial cytochrome c--were studied in aqueous solution. The total fluorescence intensity decay measured over the whole emission spectrum was analyzed as a sum of three or four exponentials by the nonlinear least-squares method, the last model always providing a slight but significant decrease in the chi 2 values. Maximum entropy analysis, recently developed for time-resolved fluorometry (Livesey et al., 1987; Livesey & Brochon, 1987), strongly suggests the existence of a distribution including at least four separate classes of lifetimes. The center values were around 0.1-0.2, 1, 3, and 5 ns, in agreement with the lifetime values obtained by nonlinear least-squares regression analysis. As a function of the emission wavelength, these values remained constant within the experimental error, whereas a redistribution of the fractional amplitudes was observed: the contributions of the short components increased in the blue edge region of the emission spectrum. Temperature increase led essentially to a redistribution of the fractional amplitudes, affecting mostly that of the 5-ns component, which almost totally disappeared at high temperature (35-40 degrees C). The lifetime values were not significantly affected except for the 3-ns component, which decreased by about 15% in the temperature range studied. Such observations strongly suggest that the protein exists under different conformational substates in thermal equilibrium. Time-resolved fluorescence anisotropy measurements evidenced the existence of fast internal rotation of the Trp residue. An average maximum restricted angle of rotation of around 55 degrees was calculated. A second internal motion, slower by 1 order of magnitude, corresponding likely to a local motion of the peptide chain involving the Trp-59 residue, was detected on the anisotropy decay curve. Finally, the longest correlation time (5 ns) should correspond to the average rotation of the overall protein. Its value doubled as a function of the protein concentration, revealing an association process leading most likely to a dimer in the concentration range studied (2-139 microM). The flexibility of the peptide chain was more restrained in the associated than in the monomeric form, but the fast internal rotation of the Trp residue was not.  相似文献   

5.
6.
J B Ross  K W Rousslang  L Brand 《Biochemistry》1981,20(15):4361-4369
The direct time-resolved fluorescence anisotropy of the single tryptophan residue in the polypeptide hormone adrenocorticotropin-(1-24) (ACTH) and the fluorescence decay kinetics of this residue (Trp-9) are reported. Two rotational correlation times are observed. One, occurring on the subnanosecond time scale, reflects the rotation of the indole ring, and the other, which extends into the nanosecond range, is dominated by the complex motions of the polypeptide chain. The fluorescence lifetimes of the single tryptophan in glucagon (Trp-25) and the 23-26 glucagon peptide were also measured. In all cases the fluorescence kinetics were satisfied by a double-exponential decay law. The fluorescence lifetimes of several tryptophan and indole derivatives and two tryptophan dipeptides were examined in order to interpret the kinetics. In close agreement with the findings of Szabo and Rayner [Szabo, A. G., & Rayner, D. M. (1980) J. Am. Chem. Soc. 102, 554-563], the tryptophan zwitterion exhibits emission wavelength dependent double-exponential decay kinetics. At 320 nm tau 1 = 3.2 ns and tau 2 = 0.8 ns, with alpha 1 = 0.7 and alpha 2 = 0.3. Above 380 nm only the 3.2-ns component is observed. By contrast the neutral derivative N-acetyltryptophanamide has a single exponential decay of 3.0 ns. The multiexponential decay kinetics of the polypeptides are discussed in terms of flexibility of the polypeptide chain and neighboring side-chain interactions.  相似文献   

7.
A model peptide with enhanced helicity   总被引:4,自引:0,他引:4  
The sequence of a model monomeric peptide, acetylA(EAAAK)3Aamide was altered to expedite measurement of peptide concentration and to enhance its fractional helical content. Replacement of the N-terminal alanine residue with a tryptophan residue provides a convenient chromophore for measurement of peptide concentration without diminishing the helical content. Replacement of the three lysine residues with arginine residues enhances the helical content without loss of their electrostatic contributions. Increasing the number of EAAAR sequence units in the peptide acetylW(EAAAR)nAamide from three to five indicates that the spectral features anticipated for a completely helical peptide are closely approached.  相似文献   

8.
C K Wang  R S Mani  C M Kay  H C Cheung 《Biochemistry》1992,31(17):4289-4295
We have used time-resolved laser fluorescence spectroscopy to investigate the intensity and anisotropy decays of the single tryptophan residue in bovine brain S-100a (alpha beta) protein. The steady-state and acrylamide quenching results indicated that the Trp 90 of the alpha-subunit was partially buried in a relatively nonpolar environment at pH 7.5. Both Ca2+ and pH 8.5 slightly enhanced the exposure of the residue to the solvent, but the residue remained partially buried in the calcium complex at both pH values. The best representation of the intensity decays was a linear combination of three exponential terms, regardless of solvent condition and temperature. The three lifetimes (tau i) were in the range of 0.4-5 ns and insensitive to emission wavelength, but their fractional amplitudes (alpha i) shifted in favor of the shortest component (alpha 1) when the decays were measured at the blue end of the emission spectrum. These results suggest that an excited-state interaction between the indole ring and the side chain of an adjacent residue may be responsible for the observed shortest lifetime. In the presence of Ca2+, the three lifetimes remained relatively unaltered, but the values of alpha 1 decreased by a factor of 2.3 at pH 7.2 and a factor of 1.8 at pH 8.2. This Ca(2+)-induced decrease may be attributed to disruption of the putative excited-state interaction resulting from reorientations of the alpha-helical segments flanking a Ca(2+)-binding loop (residues 62-73). At both pH 7.2 and 8.4, the anisotropy decays of the apoprotein followed a biexponential decay law.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.  相似文献   

10.
The relationship between beta-sheet secondary structure and intrinsic tryptophan fluorescence parameters of erabutoxin b, alpha-cobratoxin, and alpha-bungarotoxin were examined. Nuclear magnetic resonance and x-ray crystallography have shown that these neurotoxins have comparable beta-sheet, beta-turn, and random coil secondary structures. Each toxin contains a single tryptophan (Trp) residue within its beta-sheet. The time-resolved fluorescence properties of native erabutoxin b and alpha-cobratoxin are best described by triple exponential decay kinetics, whereas native alpha-bungarotoxin exhibits more than four lifetimes. The disulphide bonds of each toxin were reduced to facilitate carboxymethylation and amidocarboxymethylation. The two different toxin derivatives of all three neurotoxins displayed triple exponential decay kinetics and were completely denatured as evidenced by circular dichroism (random coil). The concentration (c) values of the three fluorescence decay times (time-resolved fluorescence spectroscopy (TRFS)) were dramatically different from those of the native toxins. Each neurotoxin, treated with different concentrations of guanidinium hydrochloride (GuHCl), was studied both by circular dichroism and TRFS. Disappearance of the beta-sheet secondary structural features with increasing concentrations of GuHCl was accompanied by a shift in the relative contribution (c value) of each fluorescence decay time (TRFS). It was found that certain disulphide residues confer added stability to the beta-sheet secondary structure of these neurotoxins and that the center of the beta-sheet is last to unfold. These titrations show that Trp can be used as a very localized probe of secondary structure.  相似文献   

11.
To examine the relationship between peptide sequence and the interaction of amphipathic alpha-helical peptides with phosphatidylcholines, various methods of mixing the peptide and lipid were explored. A series of amphipathic alpha-helical peptides containing from 10 to 18 residues were synthesized by solid-phase techniques. An 18-residue peptide and two relatively hydrophobic 10-residue peptides did not disrupt dimyristoylphosphatidylcholine liposomes when added to the lipid in buffer. However, when the peptides were premixed with lipid in a suitable organic solvent and then reconstituted with aqueous buffer, clear micelles were formed, indicating association of the amphipathic alpha-helical peptide with lipid. In general, the best solvent for this purpose was trifluoroethanol. The circular dichroic and fluorescence spectra of peptides which readily formed clear mixtures when mixed in buffer with dimyristoylphosphatidylcholine liposomes were similar when prepared either by the alternative pathway technique using trifluoroethanol or by a cholate removal technique. For the peptides which did not clear liposomes in buffer, first mixing with dimyristoylphosphatidylcholine in trifluoroethanol resulted in an increase in the alpha-helicity of the peptides as judged by circular dichroic spectra and a blue-shift in the fluorescence emission maxima of the single tryptophan residue in each peptide. These data are consistent with formation of an amphipathic alpha-helix in lipid by peptides which based on mixing experiments with dimyristoylphosphatidylcholine liposomes in buffer at the phase transition temperature of the lipid would be considered ineffective in lipid binding. Thus, simple mixing of peptides with liposomes may give misleading results concerning the intrinsic affinity of a particular peptide sequence for lipid. In addition, the data demonstrate that relatively hydrophobic amphipathic alpha-helical peptides which do not form small micelles with dimyristoylphosphatidylcholine spontaneously in aqueous solution may interact with lipid as typical amphipathic alpha-helices when mixed by an alternative pathway.  相似文献   

12.
The two tryptophan residues of ferredoxin from Halobacterium of the Dead Sea differ in their fluorescence characteristics. One of these tryptophan residues (class 1) absorbs more to the red and is thus probably in a more apolar environment than the other (class 2). Upon removal of the ferric ions, i.e., in the apoferredoxin, a 2.2-fold increase in the quantum yield of fluorescence is observed. A double exponential decay of the fluorescence is found for ferredoxin, reduced ferredoxin, as well as for the apoferredoxin. The longer decay time assumes a constant value of 6.9 ns in all three cases, indicating that it originates in a tryptophan residue which is not affected by changes in the Fe3+ binding site (class 2 tryptophan). The shorter decay component increases gradually from 0.55 ns in oxidized ferredoxin, through 0.80 ns in the reduced ferredoxin to 1.24 ns in the apoprotein. This decay component is thus assumed to be largely due to the second tryptophan residue of the protein (class 1) located close to the Fe3+ binding site. On the other hand, the relative decay amplitude of the class 2 tryptophan is doubled upon formation of apoferredoxin. It is concluded that the class 1 tryptophan is quenched by the active site ferric ions and that the class 2 tryptophan is partially exposed to a polar environment. Whereas class 1 tryptophan may be similar to the single nonfluorescent tryptophan of spinach ferredoxin, class 2 tryptophan is found in a peptide which is present only in halophilic ferredoxins. Conformational changes occur in the molecule upon removal—but not reduction—of the ferric ions, causing the environment of the class 2 tryptophan to become more hydrophobic. It is possible that the class 1 tryptophan is associated with the occurrence of a higher redox potential in this ferredoxin, when compared with chloroplast-type ferredoxins.  相似文献   

13.
The interactions of a series of amphipathic alpha-helical peptides containing from 6 to 18 amino acid residues with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were studied by optical and calorimetric methods. Several peptides rapidly decreased the turbidity of DMPC and DPPC liposomes when mixed at the phase transition temperatures of the lipids. The extent of the clearing depended upon the chain length of the peptides, with the most effective clearing attained with peptides 10-12 residues in length. An eight-residue peptide was somewhat less effective and a six-residue peptide had no effect on liposome structure. The peptides formed small micellar structures, as judged by gel filtration chromatography. The effects of the peptides on the phase transitions of the lipids were examined by differential scanning calorimetry. The peptides that were most effective in disrupting the liposomes and forming clear micelles were also most effective in reducing the enthalpy of the gel to liquid-crystalline phase transition of the lipid. The addition of DMPC or DPPC liposomes to the peptides increased the magnitude of the negative bonds at 208 and 222 nm in circular dichroism measurements, consistent with the expected formation of alpha-helical structure on binding to lipid. The extent of burial of the single tryptophan residue in the peptides was determined by fluorescence spectroscopy. In peptides that bound to lipid, the tryptophan was in a less solvent-exposed environment in the presence of lipid, as evidenced by a blue shift in the fluorescence emission maximum of the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

15.
The fluorescence spectral distributions of four tryptophan residues of hen egg-white lysozyme were analyzed using time-resolved and quenching-resolved fluorescence spectroscopy. Trp62 and Trp108 gave the fluorescence maxima at 352 nm and 342 nm, respectively. The fluorescence of Trp28 and Trp111 occurred only at 300-360 nm and they were observed as an unresolved emission band with a maximum and shoulder at 320 nm and 330 nm. The fluorescence quenching and decay parameters of each tryptophan residue reconfirmed that Trp62 was fully exposed to the solvent but Trp108 was sealed in the cage of the peptide chains and furthermore showed that Trp28 and Trp111 are under the influence of the larger fluctuational motion at the hydrophobic matrix box. The fluorescence responses of each tryptophan residue to the lysozyme-ligand interaction suggested that the internal fluctuation was reduced by the binding of ligand to give a distorted conformation to the hydrophobic matrix box region.  相似文献   

16.
17.
We have used frequency domain fluorescence techniques to resolve the component emission spectra for several two tryptophan containing proteins (e.g., horse liver alcohol dehydrogenase, sperm whale apomyoglobin, yeast 3-phosphoglycerate kinase, apoazurin from Alcaligenes denitricans). We have first performed multifrequency phase/modulation measurements and have found the fluorescence of each of these proteins to be described by a double exponential. Then, using phase-sensitive detection and the algorithm of Gratton and Jameson [Gratton, E., & Jameson, D. M. (1985) Anal. Chem. 57, 1694-1697], we have determined the emission spectrum associated with each decay time for these proteins. We have compared these phase-resolved spectra with the fractional contributions of the component fluorophores determined by selective solute quenching experiments. Reasonably good agreement is seen in most cases, which argues that the individual Trp residues emit independently. In the case of apoazurin, however, a negative amplitude is seen for the phase-resolved spectrum of the short-lifetime component. This pattern is consistent with the occurrence of energy transfer from the internal Trp residue to the surface Trp of this protein. We also present multifrequency lifetime measurements, phase-resolved spectra, and solute quenching data for a few protein-ligand complexes, to illustrate the utility of this approach for the study of changes in the fluorescence of proteins.  相似文献   

18.
Subunit W of photosystem II (PsbW) is a single-span thylakoid membrane protein that is synthesized with a cleavable hydrophobic signal peptide and integrated into the thylakoid membrane by an apparently spontaneous mechanism. In this study, we have analyzed the secondary structure of the pre-protein at early stages of the insertion pathway, using purified recombinant pre-PsbW. We show that the protein remains soluble in Tris buffer after removal of detergent. Under these conditions pre-PsbW contains no detectable alpha-helix, whereas substantial alpha-helical structure is present in SDS micelles. In aqueous buffer, the tryptophan fluorescence emission characteristics are intermediate between those of solvent-exposed and hydrophobic environments, suggesting the formation of a partially folded structure. If denaturants are excluded from the purification protocol, pre-PsbW purifies instead as a 180-kDa oligomer with substantial alpha-helical structure. Mature-size PsbW was prepared by removal of the presequence, and we show that this protein also contains alpha-helix in detergent but in lower quantities than the pre-protein. We therefore propose that pre-PsbW contains alpha-helical structure in both the mature protein and the signal peptide in nonpolar environments. We propose that pre-PsbW acquires its alpha-helical structure only during the later, membrane-bound stages of the insertion pathway, after which it forms a "helical hairpin"-type loop intermediate in the thylakoid membrane.  相似文献   

19.
Recent characterization of spinach phosphoribulokinase has revealed that the homodimeric molecule contains only two tryptophans per 44-kDa subunit. We have performed steady-state and frequency domain studies of the intrinsic fluorescence of this protein. The fluorescence properties reflect contributions from both types of tryptophan residues. One of these appears to be relatively exposed to solvent and the quencher, acrylamide; fluoresce with a lambda max of 345 nm; decay with a fluorescence lifetime of 6.3 ns; have a relatively red-shifted absorption spectrum; and have a certain degree of independent motional freedom, with respect to the protein. The other tryptophan residue appears to be more buried; fluoresce with lambda max of 325 nm; have a lifetime of 1.7 ns; have a relatively blue-shifted absorption spectrum; and not to enjoy independent motional freedom. On comparison of phase-resolved spectral data and solute quenching data, we suggest that resonance energy transfer between the blue and red tryptophan residues may occur. We also describe the strategy of simultaneously fitting Stern-Volmer quenching data collected at two emission wavelengths.  相似文献   

20.
The evolution of the incorporation of cation transport channels into lysolecithin micelles by gramicidin A was followed by measuring the ns time-resolved fluorescence of the tryptophan residues. In all samples, the tryptophan fluorescence could be resolved into three exponentially decaying components. The three decay times ranged from 6 to 8 ns, 1.8 to 3 ns, and 0.3 to 0.8 ns, depending on the emission wavelength. The fractional fluorescence of each component changed with incubation time. The long lifetime component had a reduced contribution to the total fluorescence while the short decay time component increased. The fluorescence spectra could be resolved into three distinct fluorescent components having maxima at 340 nm, 330 nm and 323 nm after 90 min of incubation, and 335 nm, 325 nm and 320 nm after 24 h of incubation. These maxima were, respectively, associated with the long, medium and short decay components. The fluorescence decay behaviour was interpreted as representing three families of tryptophans, the short lifetime component being due to a stacking interaction between tryptophan residues. The variation with incubation time suggests a two-step process in the channel-lipid organization. The first is associated with the conformational change of the polypeptide as it takes up a left-handed helical head-to-head dimer structure in the lipid. The second step is proposed to involve changes originating from membrane assembly and intermolecular interactions between channels as they form hexameric clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号