首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Intrastriatal injection of the reversible succinate dehydrogenase inhibitor malonate produces both energy depletion and striatal lesions similar to that seen in cerebral ischemia and Huntington's disease. The mechanisms of neuronal cell death involve secondary excitotoxicity and the generation of reactive oxygen species. Here, we investigated the effects of dopamine on malonate-induced generation of hydroxyl radicals and striatal lesion volumes. Using in vivo microdialysis, we found that malonate induced a 94-fold increase in extracellular striatal dopamine concentrations. This was paralleled by an increase in the generation of hydroxyl radicals. Prior unilateral lesioning of the nigrostriatal dopaminergic pathway by focal injection of 6-hydroxydopamine blocked the malonate-induced increase in dopamine concentrations and the generation of hydroxyl radicals and attenuated the lesion volume. In contrast, the NMDA receptor antagonist MK-801 attenuated malonate-induced lesion volumes but did not block the generation of hydroxyl radicals. Thus, the dopaminergic and glutamatergic pathways are essential in the pathogenesis of malonate-induced striatal lesions. Our results suggest that the malonate-induced release of dopamine but not NMDA receptor activation mediates hydroxyl radical formation.  相似文献   

2.
(R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.  相似文献   

3.
3-Chloro-alpha-phenylpyrazinemethanol (3-CPM) inhibited monoamine oxidase (MAO) types A and B in vivo in mouse brain, heart and liver. The inhibition was dose-dependent at doses of 0.3-32 mg/kg i.p. and occurred within 1 h after the compound was injected. 3-CPM was a very weak inhibitor of mouse brain mitochondrial MAO activity in vitro, even when preincubated with the enzyme; MAO-A was inhibited only about 50% at a high concentration of 3-CPM (1 mM), and MAO-B was inhibited even less. After a 10 mg/kg i.p. dose of 3-CPM in mice, both MAO-A and MAO-B were inhibited at day 1, but activity had largely recovered within a few days in brain, liver and heart. 3-CPM at doses of 1, 3, 10 and 32 mg/kg i.p. caused dose-dependent antagonism of the depletion of striatal dopamine and of cortical norepinephrine by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 3-CPM is therefore a potent inhibitor of MAO-A and of MAO-B in mice in vivo despite its weak effect on the enzyme in vitro. A metabolite of the drug may be involved in the in vivo effects.  相似文献   

4.
1-Methyl-4-phenyl-tetrahydropyridine (MPTP) given in single doses to rats depleted norepinephrine concentration in heart and mesenteric artery but had little effect on catecholamine concentration in brain. MPTP did not share with amphetamine the ability to cause persistent depletion of striatal dopamine in iprindole-treated rats. Administration of MPTP via osmotic minipumps implanted s.c. for 24 hrs after a loading dose of MPTP in rats resulted in depletion of striatal dopamine and its metabolites one week later. MPTP in vitro was a reasonably potent, competitive and reversible inhibitor of MAO-A (monoamine oxidase type A). MPTP appeared to inhibit MAO-A in rat brain in vivo as determined by its antagonism of the inactivation of MAO-A by pargyline and by its antagonism of the increase in dopamine metabolites resulting from the administration of Ro 4-1284, a dopamine releaser. The inhibition of MAO-B by MPTP in vitro was noncompetitive, time-dependent, and not fully reversed by dialysis, consistent with the findings of others that MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP given s.c. resulted in marked depletion of dopamine and its metabolites one week later, and the depletion of dopamine was completely prevented by pretreatment with deprenyl, which inhibited MAO-B but not MAO-A. These and other studies in rodents may help in elucidating the mechanisms involved in the destructive effects of MPTP on striatal dopamine neurons that lead to symptoms of Parkinson's disease in humans and in monkeys.  相似文献   

5.
Defects in mitochondrial energy metabolism have been implicated in the pathology of several neurodegenerative disorders. In addition, the reactive metabolites generated from the metabolism and oxidation of the neurotransmitter dopamine (DA) are thought to contribute to the damage to neurons of the basal ganglia. We have previously demonstrated that infusions of the metabolic inhibitor malonate into the striata of mice or rats produce degeneration of DA nerve terminals. In the present studies, we demonstrate that an intrastriatal infusion of malonate induces a substantial increase in DA efflux in awake, behaving mice as measured by in vivo microdialysis. Furthermore, pretreatment of mice with tetrabenazine (TBZ) or the TBZ analogue Ro 4-1284 (Ro-4), compounds that reversibly inhibit the vesicular storage of DA, attenuates the malonate-induced DA efflux as well as the damage to DA nerve terminals. Consistent with these findings, the damage to both DA and GABA neurons in mesencephalic cultures by malonate exposure was attenuated by pretreatment with TBZ or Ro-4. Treatment with these compounds did not affect the formation of free radicals or the inhibition of oxidative phosphorylation resulting from malonate exposure alone. Our data suggest that DA plays an important role in the neurotoxicity produced by malonate. These findings provide direct evidence that inhibition of succinate dehydrogenase causes an increase in extracellular DA levels and indicate that bioenergetic defects may contribute to the pathogenesis of chronic neurodegenerative diseases through a mechanism involving DA.  相似文献   

6.
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.  相似文献   

7.
The relative distribution of type A and type B monoamine oxidase (MAO) inside and outside the monoaminergic synaptosomes in preparations from hypothalamus and striatum of the guinea pig was determined by incubation of synaptosomal preparations of these regions with low concentrations of [14C]5-hydroxytryptamine (5-HT), noradrenaline, and dopamine. The deamination within the monoaminergic synaptosomes was hindered by selective amine uptake inhibitors. In the absence of these inhibitors, both intra- and extraneuronal deamination was measured. The two forms of the enzyme were differentiated with the irreversible and selective MAO-A and MAO-B inhibitors clorgyline and selegiline (l-deprenyl), respectively. [14C]5-HT was deaminated greater than 90% by MAO-A both inside and outside the 5-hydroxytryptaminergic synaptosomes prepared from the guinea pig hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes of the hypothalamic preparation was in the ratio 75:25% for MAO-A:MAO-B; the corresponding ratio outside these synaptosomes was 45:55%. The deamination of [14C]dopamine within dopaminergic synaptosomes in the striatal preparation was 65% type A:35% type B, whereas outside these synaptosomes the ratio was 35:65%. Because the relative amounts and the distribution of the two forms of MAO in the guinea pig brain seem to be similar to those previously detected for the human brain, the MAO in the guinea pig brain may be a good model for the MAO in the human brain.  相似文献   

8.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride injected s.c. at 20 mg/kg once daily for four days resulted in marked depletion of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in mouse striatum one week after the last dose. Pretreatment with MD 240928, (R)-[4-((3-chlorophenyl)-methoxy)phenyl]-5-[(methylamino)methyl]-2- oxazolidinone methanesulfonate, prevented the depletion of striatal dopamine, DOPAC and HVA, whereas pretreatment with harmaline did not. MD 240928 selectively inhibited type B not type A monoamine oxidase (MAO), whereas harmaline selectively inhibited type A MAO in mouse striatum. Acutely after injection of harmaline, DOPAC and HVA concentrations were decreased in mouse striatum; these changes were not produced by MD 240928. The acute changes in dopamine metabolites reveal that MAO-A not MAO-B is responsible for the oxidation of dopamine in mouse striatum. Protection against the neurotoxic effects of MPTP by MD 240928 but not by harmaline indicates that prevention of dopamine oxidation is not the mechanism of the protective effect; instead the protection probably is due to prevention of MPTP metabolism by MAO-B, this metabolism having been shown to occur by other workers. The results with these reversible, competitive inhibitors of the two types of MAO are in agreement with previously reported results from studies using irreversible inhibitors of MAO.  相似文献   

9.
Transgenic Huntington's disease (HD) mice, expressing exon 1 of the HD gene with an expanded CAG repeat, are totally resistant to striatal lesion induced by excessive NMDA receptor activation. We now show that striatal lesions induced by the mitochondrial toxin malonate are reduced by 70-80% in transgenic HD mice compared with wild-type littermate controls. This occurred in 6- and 12-week-old HD mice with 150 CAG repeats (line R6/2) and in 18-week-old, but not 6-week-old, HD mice with 115 CAG repeats (line R6/1). Therefore, we show for the first time that the resistance to neurotoxin in transgenic HD mice is dependent on both the CAG repeat length and the age of the mice. Importantly, most HD patients develop symptoms in adulthood and exhibit an inverse relationship between CAG repeat length and age of onset. Transgenic mice expressing a normal CAG repeat (18 CAG) were not resistant to malonate. Although endogenous glutamate release has been implicated in malonate-induced cell death, glutamate release from striatal synaptosomes was not decreased in HD mice. Malonate-induced striatal cell death was reduced by 50-60% in wild-type mice when they were treated with either the NMDA receptor antagonist MK-801 or the caspase inhibitor zVAD-fmk. These two compounds did not reduce lesion size in transgenic R6/1 mice. This might suggest that NMDA receptor- and caspase-mediated cell death pathways are inhibited and that the limited malonate-induced cell death still occurring in HD mice is independent of these pathways. There were no changes in striatal levels of the two anti cell death proteins Bcl-X(L) and X-linked inhibitor of apoptosis protein (XIAP), before or after the lesion in transgenic HD mice. We propose that mutant huntingtin causes a sublethal grade of metabolic stress which is CAG repeat length-dependent and results in up-regulation over time of cellular defense mechanisms against impaired energy metabolism and excitotoxicity.  相似文献   

10.
Abstract: Subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) HC1 (25 mg/kg) in pregnant female mice at the 17th day of gestation markedly depleted striatal dopamine (DA) concentrations in the mothers 24 h later and at 24 h and 28 days after delivery. By contrast, in the offspring of the female mice exposed to MPTP during pregnancy, fetal brain DA concentrations at 24 h after injection and at 24 h after birth and striatal DA levels at 14 and 28 days postnatally were unaffected and identical to those in age-matched controls. The postnatal ontogenesis of striatal DA levels was identical in offspring of control vehicle- and MPTP-treated pregnant mice. Also, prenatal challenge with MPTP did not make nigrostriatal DA neurons more vulnerable to a second postnatal treatment with the toxin. Striatal DA depletions were identical in 6-week-old mice given MPTP, whether they were exposed to MPTP or to vehicle in utero. Monoamine oxidase (EC 1.4.3.4; MAO) type B activity was extremely low in the fetal brain and, relatively, much lower than that of MAO-A. Prenatal MPTP administration reduced maternal striatal and also embryonal brain MAO-B activity at 24 h post treatment but did not alter the normal postnatal development of striatal MAO-A and -B activities in the offspring. Study suggests that resistance of fetal DA neurons to the DA-depleting effect of MPTP may be due, at least in part, to an absence in the embryonal brain of adequately developed MAO-B activity required for the conversion of MPTP to its toxic metabolite, 1-methyl-4-phenylpyridinium ion.  相似文献   

11.
Abstract: The role of the glutathione system in protecting dopamine neurons from a mild impairment of energy metabolism imposed by the competitive succinate dehydrogenase inhibitor, malonate, was investigated in vitro and in vivo. Treatment of mesencephalic cultures with 10 µ M buthionine sulfoxamine for 24 h reduced total glutathione levels in the cultures by 68%. Reduction of cellular glutathione per se was not toxic to the dopamine population, but potentiated toxicity when the cultures were exposed to malonate. In contrast, transgenic mice overexpressing glutathione peroxidase (hGPE) that received an intrastriatal infusion of malonate (3 µmol) into the left side had significantly less loss of striatal dopamine than their hGPE-negative littermates when assayed 1 week following infusion. These studies demonstrate that manipulation of the glutathione system influences susceptibility of dopamine neurons to damage due to energy impairment. The findings may provide insight into the loss of dopamine neurons in Parkinson's disease in which defects in both energy metabolism and the glutathione system have been identified.  相似文献   

12.
In rats, striatal histotoxic hypoxic lesions produced by the mitochondrial toxin malonate resemble those of focal cerebral ischemia. Intrastriatal injections of malonate induced cleavage of caspase-2 beginning at 6 h, and caspase-3-like activity as identified by DEVD biotin affinity-labeling within 12 h. DEVD affinity-labeling was prevented and lesion volume reduced in transgenic mice overexpressing BCL-2 in neuronal cells. Intrastriatal injection of the tripeptide, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a caspase inhibitor, at 3 h, 6 h, or 9 h after malonate injections reduced the lesion volume produced by malonate. A combination of pretreatment with the NMDA antagonist, dizocilpine (MK-801), and delayed treatment with zVAD-fmk provided synergistic protection compared with either treatment alone and extended the therapeutic window for caspase inhibition to 12 h. Treatment with cycloheximide and zVAD-fmk, but not with MK-801, blocked the malonate-induced cleavage of caspase-2. NMDA injections alone resulted in a weak caspase-2 cleavage. These results suggest that malonate toxicity induces neuronal death by more than one pathway. They strongly implicate early excitotoxicity and delayed caspase activation in neuronal loss after focal ischemic lesions and offer a new strategy for the treatment of stroke.  相似文献   

13.
Abstract: The effect of selective inhibition of monoamine oxidase (MAO) subtypes A and B on striatal metabolism of DOPA to dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid; HVA) was studied in halothane-anesthetized rats 3 weeks after unilateral 6-hydroxydopamine lesion of the substantia nigra. Implantation of bilateral microdialysis probes allowed simultaneous quantitation of metabolite production on lesioned and control sides. The DOPA was administered as a 15-min bolus of 1 m M solution in the striatal microdialysate. Rats were pretreated with the selective MAO-A inhibitor clorgyline, or the selective MAO-B inhibitors deprenyl or TVP-101 [2,3-dihydro- N -2-propynyl-1 H -inden-1-amine-(1 R )-hydrochloride]. Intrastriatal infusion of DOPA caused an increased efflux of DA, DOPAC, and HVA, which was greater on the intact side. Clorgyline, but not deprenyl or TVP-101, increased post-DOPA DA efflux on both intact and lesioned sides. Clorgyline also caused a marked suppression of post-DOPA DOPAC and HVA effluxes, whereas only mild effects were produced by the MAO-B inhibitors. There was no evidence for a differential effect of MAO-B inhibition on efflux of DA or metabolites in the lesioned as compared with the control striatum. The results indicate a major role for MAO-A in DA metabolism both intra- and extraneuronally in the rat striatum.  相似文献   

14.
Mitochondrial monoamine oxidase (MAO) has been considered to be involved in neuronal degeneration either by increased oxidative stress or protection with the inhibitors of type B MAO (MAO-B). In this paper, the role of type A MAO (MAO-A) in apoptosis was studied using human neuroblastoma SH-SY5Y cells, where only MAO-A is expressed. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, an MAO-A inhibitor, reduced membrane potential, DeltaPsim, in isolated mitochondria, and induced apoptosis in the cells, which 5-hydroxytryptamine, an MAO-A substrate, prevented. In contrast, beta-phenylethylamine, an MAO-B substrate, did not suppress the DeltaPsim decline by N-methyl(R)salsolinol. The binding of N-methyl(R)salsolinol to mitochondria was inhibited by clorgyline, a MOA-A inhibitor, but not by (-)deprenyl, an MAO-B inhibitor. RNA interference targeting MAO-A significantly reduced the binding of N-methyl(R)salsolinol with simultaneous reduction in the MAO activity. To examine the intervention of MAO-B in the apoptotic process, human MAO-B was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even although the activity and protein of MAO increased markedly. These results demonstrate a novel function of MAO-A in the binding of neurotoxins and the induction of apoptosis, which may account for neuronal cell death in neurodegenerative disorders, including Parkinson's disease.  相似文献   

15.
Pargyline, an inhibitor of monoamine oxidase type B (MAO-B), did not prevent the depletion of heart norepinephrine 24 hr after a single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice. In mice killed 24 hr after the last of 4 daily doses of MPTP, the depletion of dopamine in the striatum and of norepinephrine in the frontal cortex was completely prevented by pargyline, but the depletion of heart norepinephrine was not prevented. These results with pargyline are the same as results obtained earlier with deprenyl, another selective inhibitor of MAO-B. The doses of pargyline and of deprenyl that were used resulted in almost complete inhibition of MAO-B activity (phenylethylamine as substrate) in brain, heart and liver of mice. Deprenyl did not inhibit MAO-A activity (serotonin as substrate) in brain, but pargyline caused some inhibition of MAO-A in brain. In heart and liver, serotonin was oxidized only at about 1/10 the rate of phenylethylamine oxidation, suggesting that MAO-B predominates in these tissues. Both pargyline and deprenyl caused some inhibition of serotonin deamination in heart and liver, suggesting that the oxidation may have been due partly to MAO-B. Experiments with selective MAO inhibitors in vitro showed that only about 20% of the oxidation of serotonin was occurring via MAO-B in heart and liver. The in vitro oxidation of MPTP by MAO in mouse brain, heart and liver was almost completely inhibited by pretreatment with either pargyline or deprenyl. Neither pargyline nor deprenyl had any significant effect on the concentrations of MPTP in brain or heart one-half hr after injection of MPTP into mice. The concentrations of the metabolite, MPP+ (1-methyl-4-phenyl-pyridinium), were markedly reduced in brain and in heart by pretreatment with either pargyline or deprenyl. The data suggest that MPP+ formation, which is necessary for the depletion of brain catecholamines after MPTP injection, may not be necessary for depletion of norepinephrine in heart. Since the oxidation of MPTP in vitro was inhibited more by pargyline or deprenyl pretreatment than was the appearance of MPP+ in vivo, the possibility exists that some MPP+ formation might occur by an enzyme other than MAO.  相似文献   

16.
In the rat brain, dopamine is metabolised by both A and B forms of monoamine oxidase (MAO), although the A form of the enzyme is the major component. The Km of MAO-A toward dopamine (120 microM) is lower than the Km of MAO-B toward this substrate (340 microM). The activity of MAO-A was lower in old rats than in young rats, and the same degree of decrease was found for 5-hydroxytryptamine as for dopamine as substrates for this enzyme form. The activity of MAO-B was higher in the old rats, the degree of increase being the same for dopamine as for beta-phenethylamine as substrates for this enzyme form. The Ki values of the inhibition of MAO-A by cimoxatone and MD770222 (the principal plasma metabolite of cimoxatone) were independent of the substrate used to assay for activity, but were lower than the Ki values for the inhibition of MAO-B by these compounds.  相似文献   

17.
Abstract: Alterations in the glutathione system and impairment in energy metabolism have both been implicated in the loss of dopamine neurons in Parkinson's disease. This study examined the importance of cellular glutathione and the involvement of oxidative stress in the loss of mesencephalic dopamine and GABA neurons due to inhibition of energy metabolism with malonate, the reversible, competitive inhibitor of succinate dehydrogenase. Consistent with previous findings, exposure to malonate for 24 h followed by 48 h of recovery caused a dose-dependent loss of the dopamine population with little effect on the GABA population. Toxicity was assessed by simultaneous measurement of the high-affinity uptake of [3H]dopamine and [14C]GABA. Total glutathione content in rat mesencephalic cultures was decreased by 65% with a 24-h pretreatment with 10 µM buthionine sulfoxamine. This reduction in glutathione level greatly potentiated damage to both the dopamine and GABA populations and removed the differential susceptibility between the two populations in response to malonate. These findings point to a role for oxidative stress occurring during energy impairment by malonate. Consistent with this, several spin-trapping agents, α-phenyl-tert-butyl nitrone and two cyclic nitrones, MDL 101,002 and MDL 102,832, completely prevented malonate-induced damage to the dopamine neurons in the absence of buthionine sulfoxamine. The spin-trapping agents also completely prevented toxicity to both the dopamine and GABA populations when cultures were exposed to malonate after pretreatment with buthionine sulfoxamine to reduce glutathione levels. Counts of tyrosine hydroxylase-positive neurons verified enhancement of cell loss by buthionine sulfoxamine plus malonate and protection against cell loss by the spin-trapping agents. NMDA receptors have also been shown to play a role in malonate-induced dopamine cell loss and are associated with the generation of free radicals. Consistent with this, toxicity to the dopamine neurons due to a 1-h exposure to 50 µM glutamate was attenuated by the nitrone spin traps. These findings provide evidence for an oxidative challenge occurring during inhibition of energy metabolism by malonate and show that glutathione is an important neuroprotectant for midbrain neurons during situations when energy metabolism is impaired.  相似文献   

18.
Monoamine oxidase (MAO) is an enzyme involved in brain catabolism of monoamine neurotransmitters whose oxidative deamination results in the production of hydrogen peroxide. It has been documented that hydrogen peroxide derived from MAO activity represents a special source of oxidative stress in the brain. In this study we investigated the potential effects of the production of hydroxyl radicals (*OH) on MAO-A and MAO-B activities using mitochondrial preparations obtained from rat brain. Ascorbic acid (100 microM) and Fe2+ (0.2, 0.4, 0.8, and 1.6 microM) were used to induce the production of *OH. Results showed that the generation of *OH significantly reduced both MAO-A (85-53%) and MAO-B (77-39%) activities, exhibiting a linear correlation between both MAO-A and MAO-B activities and the amount of *OH produced. The reported inhibition was found to be irreversible for both MAO-A and MAO-B. Assuming the proven contribution of MAO activity to brain oxidative stress, this inhibition appears to reduce this contribution when an overproduction of *OH occurs.  相似文献   

19.
Subfractionation of the crude synaptosomal-mitochondrial fraction of rat striatum in a continuous sucrose gradient in a zonal rotor led to the following results. The distribution pattern of monoamine oxidase (MAO) activity towards dopamine (DA) was very similar to the pattern of MAO activity towards serotonin (5HT), but differed from the pattern of MAO activity towards kynuramine (KYN). As 5HT is specifically deaminated by MAO-A while KYN is a common MAO substrate, this supports earlier suggestions that in rat striatal preparations DA is deaminated preferentially by MAO-A. The patterns of the MAO activities towards DA and 5HT were clearly dissimilar, despite considerable overlap, to the patterns of tyrosine hydroxylase (TH) and DOPA decarboxylase (DD) activity, both marking the presence of striatal dopaminergic synaptosomes. The peak activities were separated and all patterns were symmetrical without showing a shoulder. This indicates that rat striatal MAO activity towards DA and 5HT is not specifically or for the greater part localized in dopaminergic terminals. We also investigated the effects of electrolytic and 6-hydroxydopamine lesions of the substantia nigra, both causing extensive degeneration of striatal dopaminergic terminals as appeared from the large decrease of striatal TH and DD activity. However, neither type of lesion induced a reduction of the MAO activity towards any of the substrates used. It is concluded towards DA and 5HT (probably MAO-A activity) present in dopaminergic terminals is very low compared with the total activity of this enzyme in rat striatal tissue.  相似文献   

20.
Abstract: Acute inhibition of monoamine oxidase B (MAO-B) in the rat does not affect striatal dopamine (DA) metabolism, but chronic MAO-B inhibition with deprenyl has been reported to increase the release of striatal DA, as shown using in vitro techniques. To see whether chronic MAO-B inhibition also causes an increase in DA release in vivo, rats were treated for 21 days with either deprenyl (0.25 mg/kg), TVP-1012 [R(+)-N-propargyl-1-aminoindan mesylate; 0.05 mg/kg), an irreversible inhibitor of MAO-B that is not metabolized to amphetamines, clorgyline (0.2 mg/kg), or saline (all doses once daily by subcutaneous injection). Concentric 4-mm-long microdialysis probes were implanted in the left striatum under pentobarbital/chloral hydrate anesthesia on day 21, and microdialysate DA, 3,4-dihydroxyacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenyl acetic acid (HVA) were determined in the conscious animals on day 22. Baseline levels of DA were as follows: control, 0.34 ± 0.04 (n = 13); deprenyl, 0.88 ± 0.10 (n = 8, p < 0.01); TVP-1012, 0.94 ± 0.20 (n = 7, p < 0.01); clorgyline, 0.90 ± 0.12 (n = 7, p < 0.01) pmol/20 min. Levels of DOPAC and HVA were reduced only in the clorgyline-treated group. The incremental release of DA induced by depolarizing concentration of K+ (100 mM bolus of KCl in perfusate) was significantly greater in clorgyline- and deprenyl-treated rats and elevated (nonsignificantly) in TVP-1012-treated rats. Chronic treatment with the MAO-B inhibitors reduced striatal MAO-B activity by 90%, with 15% (TVP-1012) or 40% (deprenyl) inhibition of MAO-A. Clorgyline inhibited MAO-A by 95%, with 30% inhibition of MAO-B. A single dose of deprenyl (0.25 mg/kg, 24 h before microdialysis) had no significant effect on striatal efflux of DA. The results show that DA metabolism was reduced only by clorgyline, whereas neuronal release of DA was enhanced by both MAO-A and MAO-B inhibitors on chronic administration. The enhanced DA release by chronic MAO-B inhibition does not appear to be dependent on production of amphetamine-like metabolites of the inhibitor. Possible mechanisms for the release-enhancing effect of the MAO-B inhibitors include elevation in levels of endogenous β-phenylethylamine, or an inhibition of DA reuptake, which develops only on chronic administration, because both deprenyl and TVP-1012 have only very weak effects on amine uptake in acute experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号