首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Chromosome preparations from seven subjects with aberrations of sex chromosomes were utilized for in situ hybridization studies with the tritium-labeled Y-derived probe p50f. Two subjects had a pseudodicentric chromosome consisting of two copies of Yp and a portion of Y long arm; two were XX males [46,XX,t(Xp;Yp)], one was missing part of the Y short arm, and another had t(5p;Yq); in addition cells from an XYY male as well as a normal 46,XY male, and a 46,XX female, were hybridized with the same probe. The hybridization technique of Harper and Saunders (1981) was used. There was excess labeling of the Yp/paracentromeric regions in the cases with the normal Y, the XYY, the pseudodicentric Y, and the 5/Y translocation. No significant label was seen on metaphases from the normal 46,XX female or the female with the partially missing Y short arm. Excess label was present on the X short arm in the cases of the XX males; there were 8% and 9.5% of cells with label. The combined cytogenetic and hybridization data indicate that one X short arm in these XX males has undergone a translocation with Yp, and that genes for sex determination probably reside on the distal half of the Y short arm.  相似文献   

2.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D. G. Bedo 《Chromosoma》1980,77(3):299-308
In Lucilia cuprina C-banding produces procentric bands on all autosomes and deep staining over most of the X and Y chromosomes which conciderably facilitates the analysis of complex Y chromosome rearrangements. The Y chromosome is generally darkly C-banded throughout while in the X chromosome a pale staining segment is found in the distal portion of the long arm. Modulation of the banding reaction results in grey areas in both X and Y. When C-banding is compared with allocycly it is clear that not all heteropycnotic regions in the sex chromosomes C-band to the same extent. Secondary constrictions in the short arms of both X and Y chromosomes are clearly revealed by C-banding, the X satellite being polymorphic for size.— Q-banding results in a brightly fluorescing band in the short arm of structurally normal Y chromosomes. This band loses its fluorescence in some translocations, probably through a position effect. Hoechst 33258 staining does not produce any brightly fluorescing bands.  相似文献   

4.
Fourteen 46,XX males were analyzed by Southern blot hybridization with seventeen different Y chromosome-derived DNA probes and by the polymerase chain reaction for an additional two sites on the short arm of Y. Eight 46,XX males possessed various segments of the short arm of the Y chromosome, including the sex determining region. The detected segments ranged from the two most distal loci to nearly the entire length of the short arm, viz., 10 out of 11 loci. None of the eight patients had hypospadia. Five out of the six remaining cases had hypospadia and no Y sequence was detected, suggesting the presence of a causative difference between hypospadiac and non-hypospadiac groups.  相似文献   

5.
Variable transfer of Y-specific sequences in XX males.   总被引:19,自引:5,他引:14       下载免费PDF全文
A series of twelve XX males and their relatives have been examined by Southern blot analysis with fourteen different Y recombinants. The pattern of Y sequences present shows considerable variation between XX males. Furthermore, on the basis of the terminal transfer model, anomalous patterns of Y sequences are evident in certain XX males in that sequences located as proximal Yp by means of a Y deletion panel are found to be present in the absence of distal sequences. These anomalies can be resolved by proposing that the order of Yp sequences varies in the population in the form of inversion polymorphisms in the Y chromosomes of normal males. Alternatively, it is necessary to invoke multiple recombination events between the X and Y chromosomes to explain the patterns of Y sequences in these XX males. Southern analysis on DNA prepared from flow sorted X chromosomes of XX males indicates that the Y sequences in these patients are linked to X chromosomes.  相似文献   

6.
Summary G- and R-banded chromosome preparations from eight of twelve 46,XX males, with no evidence of mosaicism or a free Y chromosome, were distinguished in blind trials from preparations from normal 46,XX females by virtue of heteromorphism of the short arm of one X chromosome. Photographic measurements on X chromosomes and on chromosome pair 7 in cells from twelve 46,XX males, eight 46,XX females, and four 46,XY males revealed a significant increase in the size of the p arm of one X chromosome in the group of XX males, independently characterised as being heteromorphic for Xp. No such differences were observed between X chromosomes of normal males and females or between homologues of chromosome pair 7 in all groups. The heteromorphism in XX males is a consequence of an alteration in shape (banding profile) and length of the tip of the short arm of one X chromosome, and the difference in size of the two Xp arms in these 46,XXp+ males ranged from 0.4% to 22.9%. From various considerations, including the demonstration of a Y-specific DNA fragment in DNA digests from nuclei of one of three XX males tested, it is concluded that the Xp+ chromosome is a product of Xp-Yp exchange. These exchanges are assumed to originate at meiosis in the male parent and may involve an exchange of different amounts of material. The consequences of such unequal exchange are considered in terms of the inheritance of genes located on Yp and distal Xp. No obvious phenotypic difference was associated with the presence or absence of Xp+. Thus, some males diagnosed as 46,XX are mosaic for a cryptic Y-containing cell line, and there is now excellent evidence that maleness in others may be a consequence of an autosomal recessive gene. The present data imply that in around 70% of 46,XX males, maleness is a consequence of the inheritance of a paternal X-Y interchange product.  相似文献   

7.
Summary This paper reports an attempt to determine whether the short arm of one of the X chromosomes in XX males is longer than normal. In a blind study comparing coded photomicrographs of 15 G-banded mitoses from each of five XX males and five control females, the results were ambiguous and somewhat contradictory, but gave the impression of, or were compatible with, an XXp+ phenomenon in at least two of the five XX males. Measurements of the X chromosomes from the above cells and, in addition, from 15 mitoses from each of six XXY males, failed to disclose any XXp+ phenomenon. Statistical analysis indicated that in the five XX males there was no difference in the lengths of the two Xp arms. The reasons for the apparent discrepancy between the results of ocular inspection and measurement are discussed. The putative heteromorphism might be an alteration in shape, staining intensity, or position of bands, neither of which necessarily leads to an increase in length. We conclude that our results do not indicate any XXp+ phenomenon in the five XX males tested. However, the presence or absence of XXp+ is not in itself evidence for or against interchange between the X and Y in the paternal meiosis. Our results emphasize that the etiology of XX males is likely to be heterogeneous.  相似文献   

8.
Chondrodysplasia punctata with X;Y translocation   总被引:6,自引:2,他引:4  
Summary We have studied a family in which the mother and her son were carriers of an X;Y translocation, der(X)t(X;Y) (p22.3;q11). The mother was of slightly short stature and had mildly short upper extremities. The son had epiphyseal punctate calcifications, mildly short extremities, a flattened nasal bridge, and mental retardation (chondrodysplasia punctata). The extra bands on the short arm of the X chromosome were identified as deriving from the long arm of the Y chromosome, using in situ hybridization with a Y-chromosome-specific DNA probe (pHY10). The chondrodysplasia punctata seen in our case may be associated with the abnormality of the distal short arm of the X chromosome caused by X;Y translocation.  相似文献   

9.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

10.
Many but not all rainbow trout strains have morphologically distinguishable sex chromosomes. In these strains, the short arm of the X has multiple copies of 5S rDNA and a bright DAPI band near the centromere, both of which are missing from the Y chromosome, which has a very small short arm. We examined the presence of these markers using fluorescence in situ hybridization (FISH) in four different YY clonal lines derived from different strains and compared the results with sexed fish of the Donaldson strain with the normal X/Y heteromorphism. The Y chromosome in two of the YY clonal lines (Arlee and Swanson) is indistinguishable from the X chromosome and it is positive for 5S rDNA and the DAPI bright band. On the other hand, both 5S rDNA sequences and the DAPI band were not found on the Y chromosome in Hot Creek and Clearwater which have the normal Y. Thus the presence of these two cytogenetic markers may account for the size difference between the short arm of the X and Y chromosome found in most rainbow trout strains. In fishes the expression of one type of 5S rRNA is restricted to oocytes and previous work suggests that although XX males are fairly common, XY females are rare, implying a selective disadvantage for XY females. A hypothesis is presented to explain why this sex chromosome heteromorphism is not closely linked to the SEX locus, which is found on the long arm of the Y chromosome in rainbow trout.  相似文献   

11.
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.  相似文献   

12.
In the wood lemming (Myopus schisticolor) three genetic types of sex chromosome constitution in females are postulated: XX, X*X and X*Y (X*=X with a mutation inactivating the male determining effect of the Y chromosome). Males are all XY. It is shown in the present paper that the two types of X chromosomes, X and X*, exhibit differences in the G-band patterns of their short arms. In addition, it was demonstrated in unbanded chromosomes that the short arm in X* is shorter than in X. The origin of these differences is still obscure; but they allow to identify and to distinguish the individual types of sex chromosome constitution, as of XX versus X*X females and of X*Y females versus XY males, on the basis of G-banded chromosome preparations from somatic cells.  相似文献   

13.
A 45,X male with Y-specific DNA translocated onto chromosome 15.   总被引:6,自引:1,他引:5       下载免费PDF全文
A 20-year-old male patient with chromosomal constitution 45,X, testes and normal external genitalia was examined. Neither mosaicism nor a structurally aberrant Y chromosome was observed when routine cytogenetic analysis was performed on both lymphocytes and skin fibroblasts. Y chromosome-specific single-copy and repeated DNA sequences were detected in the patient's genome by means of 11 different recombinant-DNA probes of known regional assignment on the human Y chromosome. Data indicated that the short arm, the centromere, and part of the long-arm euchromatin of the Y chromosome have been retained and that the patient lacks deletion intervals 6 and 7 of Yq. High-resolution analysis of prometaphase chromosomes revealed additional euchromatic material on the short arm of one of the patient's chromosomes 15. After in situ hybridization with the Y chromosome-specific probe pDP105, a significant grain accumulation was observed distal to 15p11.2, suggesting a Y/15 chromosomal translocation. We conclude that some 45,X males originate from Y-chromosome/autosome translocations following a break in the proximal long arm of the Y chromosome.  相似文献   

14.
The etiology of maleness in XX men   总被引:19,自引:0,他引:19  
Summary Information relating to the etiology of human XX males is reviewed. The lesser body height and smaller tooth size in comparison with control males and first-degree male relatives could imply that the patients never had any Y chromosome. Neither reports of occasional mitoses with a Y chromosome, nor of the occurrence of Y chromatin in Sertoli cells are convincing enough to support the idea that low-grade or circumscribed mosaicism is a common etiologic factor. Reports of an increase in length of one of the X chromosomes in XX males are few and some are conflicting. Nor is there any evidence to support the idea of loss of material. However, absence of visible cytogenetic alteration does not rule out the possibility of translocations, exchanges or deletions.A few familial cases are known. Mendelian gene mutations may account for a number of instances of XX males, similar genes being well known in several animal species. The existing geographical differences in the prevalence of human XX males could be explained by differences in gene frequency. But if gene mutation were a common cause of XX maleness there would be more familial cases.Any hypothesis explaining the etiology of XX males should take into account the following facts. There are at least 4 examples of XX males who have inherited the Xg allele carried by their fathers, and at least 9 of such males who have not. The frequency of the Xg phenotype among XX males is far closer to that of males than to that of females, while the absence of any color-blind XX males (among 40 tested) resembles the distribution in females. Furthermore, H-Y antigen is present in XX males, often at a strength intermediate between that in normal males and females. Finally, in a pedigree comprising three independently ascertained XX males, the mothers of all three are H-Y antigen-positive, and the pattern of inheritance of the antigen in two of them precludes X-chromosomal transmission.Many of the data are consistent with the hypothesis that XX males arise through interchange of the testic-determining gene on the Y chromosome and a portion of the X chromosome containing the Xg gene. However, actual evidence in favor of this hypothesis is still lacking, and the H-Y antigen data are not easy to explain. In contrast, if recent hypotheses on the mechanisms controlling the expression of H-Y antigen are confirmed, a gene exerting negative control on testis determination would be located near the end of of the short arm of the X chromosome. This putative gene is believed not to be inactivated in normal females, for at least two other genes located in the same region, i.e. Xg and steroid sulfatase, are not. Deletion or inactivation of these loci would explain how XX males arise and would be consistent with most, but not all, the facts.There is yet no single hypothesis that by itself can explain all the facts accumulated about XX males. While mosaicism appears very unlikely in most cases, Mendelian gene mutation, translocation, X-Y interchange, a minute deletion or preferential inactivation of an X chromosome, or part thereof, remain possible. The etiology of XX maleness may well be heterogeneous.  相似文献   

15.
Summary A replication map of human fibroblast chromosomes from two diploid human female fibroblast lines, 46,XX and 46,X, del (X)(q13), was determined using the fluorescent plus Giemsa (FPG) technique. Each chromosome was found to stain homogeneously dark when thymidine was incorporated for the entire S phase of that particular cell. As the duration of exposure to thymidine progressively decreased by increasing the incubation time in bromodeoxyuridine, the staining intensity of chromosomes decreased and, concurrently, gaps in the staining began to appear. These gaps coincide with R bands and represent the earliest areas to complete DNA synthesis. As these areas widen and increase in frequency, first Q and G bands appear, and finally C bands.Homologous X chromosomes were easily differentiated by either a comparison of the bands present or their staining intensity. The replication kinetics of the structurally abnormal heterocyclic X chromosome were very similar to those of the normal heterocyclic X chromosome. The X chromosome with deletion of a portion of the long arm was consistently late in replication.  相似文献   

16.
Summary Early replication of prometaphasic human sex chromosomes was studied with the bromodeoxyuridine (BrdU)-replication technique. The studies reveal that two distal segments of Xp, including bands Xp 22.13 and Xp 22.3, replicate early in S-phase and therefore may not be subject to random inactivation. Furthermore, the replication of these distal segments of Xp occurs synchronously with those of the short arm of the Y chromosome including bands Yp 11.2 and Yp 11.32. These segments of Xp and Yp correspond well to the pairing segment of the X and Y chromosomes where a synaptonemal complex forms at early pachytene of human spermatogenesis. The homologous early replication of Yp and the distal portion of Xp may be interpreted as a remnant left untouched by the differentiation of heteromorphic sex chromosomes from originally homomorphic autosomes. A third early replicating segment is situated on the long arm of the X chromosome and corresponds to band Xq 13.1. This segment may be correlated with the X-inactivation center postulated by Therman et al. (1979).  相似文献   

17.
On the homology between the X and the Y chromosomes of the Chinese hamster   总被引:1,自引:0,他引:1  
Tadashi Utakoji 《Chromosoma》1966,18(3):449-454
The chiasmatic association of the heteromorphic sex chromosomes in the spermatocytes of the Chinese hamster was observed in squash and/or air-dried preparations. The pairing arm of the Y was invariably its short arm. Although the X in diakinesis did not show distinct long and short arm as in mitotic metaphase, the DNA replication patterns of the sex chromosomes in spermatogonia suggested that the distal segment of the long arm of the X is homologous to the short arm of the Y.  相似文献   

18.
Summary The distamycin A-DAPI banding patterns of nonfluorescent, nonheterochromatic Y chromosomes (Ynf) in two patients with 45,X/46,XYnf mosaicism were investigated. In both cases moderately fluorescent bands were observed near the centromere and on the distal long arm of the Ynf. These bands were similar to the centrometric band on normal Y chromosomes and support the hypothesis that the Ynf is an isodicentric chromosome derived from the proximal portion of the Y chromosome.  相似文献   

19.
The replication pattern of the X and Y chromosomes at the beginning of the synthetic phase was studied in human lymphocyte cultures partially synchronized by the addition of 5-fluoro-2-deoxyuridine (FUdR). The data were evaluated statistically by an analysis of the distribution of silver grain counts over the X and Y chromosomes. —In cells from normal females, one of the X chromosomes began replication later than any other chromosomes of the complement. The short arm of the late replicating X chromosome started replication earlier than the long arm. The telomeric region of the short arm was a preferential site of DNA synthesis at the beginning of replication. —In partially synchronized lymphocyte cultures from a patient with the XXY syndrome, the Y chromosome started replication together with the late replicating X chromosome. The Y chromosome most frequently replicated synchronously with the short arm of the X. The centromeric region of the Y chromosome initiated synthesis before the telomeric region and appeared to replicate synchronously with the telomeric region of the short arm of the X. These findings are discussed with reference to the pairing of the X and Y chromosomes at meiosis.Supported in part by the National Institute of Health Research Grant HD-01979 and National Foundation Birth Defects Research Grant CRCS-40. Dr. Knight was a predoctoral fellow under National Institute of Health Training Program HD-00049-09.  相似文献   

20.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号