首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent Km values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9 ± 2.1 μM and 13.9 ± 0.3 μM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits ~85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl–oleate formation without influencing the retinyl–palmitate formation. Using this inhibitor, we estimate that ~64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

2.
Vitamin A metabolism in the human intestinal Caco-2 cell line   总被引:2,自引:0,他引:2  
T C Quick  D E Ong 《Biochemistry》1990,29(50):11116-11123
The human intestinal Caco-2 cell line, described as enterocyte-like in a number of studies, was examined for its ability to carry out the metabolism of vitamin A normally required in the absorptive process. Caco-2 cells contained cellular retinol-binding protein II, a protein which is abundant in human villus-associated enterocytes and may play an important role in the absorption of vitamin A. Microsomal preparations from Caco-2 cells contained retinal reductase, acyl-CoA-retinol acyltransferase (ARAT), and lecithin-retinol acyltransferase (LRAT) activities, which have previously been proposed to be involved in the metabolism of dietary vitamin A in the enterocyte. When intact Caco-2 cells were provided with beta-carotene, retinyl acetate, or retinol, synthesis of retinyl palmitoleate, oleate, palmitate, and small amounts of stearate resulted. However, exogenous retinyl palmitate or stearate was not used by Caco-2 cells as a source of retinol for ester synthesis. While there was a disproportionate synthesis of monoenoic fatty acid esters of retinol in Caco-2 cells compared to the retinyl esters typically found in human chylomicrons or the esters normally synthesized in rat intestine, the pattern was consistent with the substantial amount of unsaturated fatty acids, particularly 18:1 and 16:1, found in the sn-1 position of Caco-2 microsomal phosphatidylcholine, the fatty acyl donor for LRAT. Both ARAT and LRAT have been proposed to be responsible for retinyl ester synthesis in the enterocyte.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The molecular basis of retinoid absorption: a genetic dissection   总被引:2,自引:0,他引:2  
The intestine and other tissues are able to synthesize retinyl esters in an acyl-CoA-dependent manner involving an acyl-CoA:retinol acyltransferase (ARAT). However, the molecular identity of this ARAT has not been established. Recent studies of lecithin:retinol acyltransferase (LRAT)-deficient mice indicate that LRAT is responsible for the preponderance of retinyl ester synthesis in the body, aside from in the intestine and adipose tissue. Our present studies, employing a number of mutant mouse models, identify diacylglycerol acyltransferase 1 (DGAT1) as an important intestinal ARAT in vivo. The contribution that DGAT1 makes to intestinal retinyl ester synthesis becomes greater when a large pharmacologic dose of retinol is administered by gavage to mice. Moreover, when large retinol doses are administered another intestinal enzyme(s) with ARAT activity becomes apparent. Surprisingly, although DGAT1 is expressed in adipose tissue, DGAT1 does not catalyze retinyl ester synthesis in adipose tissue in vivo. Our data also establish that cellular retinol-binding protein, type II (CRBPII), which is expressed solely in the adult intestine, in vivo channels retinol to LRAT for retinyl ester synthesis. Contrary to what has been proposed in the literature based on in vitro studies, CRBPII does not directly prevent retinol from being acted upon by DGAT1 or other intestinal ARATs in vivo.  相似文献   

4.
The final step of triacylglycerol biosynthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes. The two known DGATs, DGAT1 and DGAT2, are encoded by unrelated genes. Although both DGAT1 and DGAT2 knockout mice have reduced tissue triacylglycerol contents, they have disparate phenotypes, prompting us to investigate whether the two enzymes have unrecognized functional differences. We now report that DGAT1 exhibits additional acyltransferase activities in vitro, including those of acyl CoA:monoacylglycerol acyltransferase (MGAT), wax monoester and wax diester synthases, and acyl CoA:retinol acyltransferase (ARAT), which catalyze the synthesis of diacylglycerols, wax esters, and retinyl esters, respectively. These activities were demonstrated in in vitro assays with membranes from insect cells or homogenates from COS7 cells overexpressing DGAT1. Wax synthase and ARAT activities were also demonstrated in intact COS7 cells expressing DGAT1. Additionally, cells and tissues from DGAT1-deficient mice exhibited reduced ARAT activity, and the mice had increased levels of unesterified retinol in their livers on a high-retinol diet. Our findings indicate that DGAT1 can utilize a variety of acyl acceptors as substrates in vitro and suggest that these activities may be relevant to the in vivo functions of DGAT1.  相似文献   

5.
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of the four intestinal membrane bound acyltransferases implicated in dietary fat absorption. Recently, it was found that, in addition to acylating diacylglycerol (DAG), DGAT1 also possesses robust enzymatic activity for acylating monoacylglycerol (MAG) (Yen, C. L., Monetti, M., Burri, B. J., and Farese, R. V., Jr. (2005) J. Lipid Res. 46, 1502-1511). In the current paper, we have conducted a detailed characterization of this reaction in test tube, intact cell culture, and animal models. Enzymatically, we found that triacylglycerol (TAG) synthesis from MAG by DGAT1 does not behave according to classic Michaelis-Menten kinetics. At low concentrations of 2-MAG (<50 microm), the major acylation product by DGAT1 was TAG; however, increased concentrations of 2-MAG (50-200 microm) resulted in decreased TAG formation. This unique product/substrate relationship is similar to MGAT3 but distinct from DGAT2 and MGAT2. We have also found that XP620 is an inhibitor that selectively inhibits the acylation of MAG by DGAT1 (IC(50) of human DGAT1: 16.6+/-4.0 nM (MAG as substrate) and 1499+/-318 nM (DAG as substrate); IC(50) values of human DGAT2, MGAT2, and MGAT3 are >30,000 nM). Using this pharmacological tool, we have shown that approximately 76 and approximately 89% of the in vitro TAG synthesis initiated from MAG is mediated by DGAT1 in Caco-2 cell and rat intestinal mucosal membranes, respectively. When applied to intact cultured cells, XP620 substantially decreased but did not abolish apoB secretion in differentiated Caco-2 cells. It also decreased TAG and DAG syntheses in primary enterocytes. Last, when delivered orally to rats, XP620 decreased absorption of orally administered lipids by approximately 50%. Based on these data, we conclude that the acylation of acylglycerols by DGAT1 is important for dietary fat absorption in the intestine.  相似文献   

6.
Retinol esterification in Sertoli cells by lecithin-retinol acyltransferase   总被引:1,自引:0,他引:1  
Esterification of retinol occurs during the metabolism of vitamin A in the testis. An acyl-CoA:retinol acyltransferase (ARAT) activity has been described for microsomes isolated from testis homogenates. That activity was also observed here in microsomal preparations obtained from cultured Sertoli cells from 20-day-old (midpubertal) rats. ARAT catalyzed the synthesis of retinyl laurate when free retinol and lauroyl-CoA were provided as substrates. However, in the absence of exogenous acyl-CoA, retinol was esterified by a different activity in a manner similar to the lecithin:retinol acyltransferase (LRAT) activity described recently for liver and intestine. Microsomal preparations obtained from enriched Sertoli cell fractions from the adult rat testis had 75-fold higher levels of LRAT than the preparations from midpubertal animals, but ARAT activity was the same in both these preparations. LRAT utilized an endogenous acyl donor and either unbound retinol or retinol complexed with cellular retinol-binding protein (CRBP) to catalyze the synthesis of retinyl linoleate, retinyl oleate, retinyl palmitate, and retinyl stearate. The addition of exogenous dilaurylphosphatidylcholine (DLPC) resulted in the synthesis of retinyl laurate. The esterification from both exogenous DLPC and endogenous acyl donor was inhibited by 2 mM phenylmethanesulfonyl fluoride (PMSF). ARAT activity was not affected by similar concentrations of PMSF. Furthermore, retinol bound to CRBP, a protein known to be present in Sertoli cells, was not an effective substrate for testicular ARAT. When retinol uptake and metabolism were examined in cultured Sertoli cells from 20-day-old rats, the cells synthesized the same retinyl esters that were produced by microsomal LRAT in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Marinobacter hydrocarbonoclasticus DSM 8798 has been reported to synthesize isoprenoid wax ester storage compounds when grown on phytol as the sole carbon source under limiting nitrogen and/or phosphorous conditions. We hypothesized that isoprenoid wax ester synthesis involves (i) activation of an isoprenoid fatty acid by a coenzyme A (CoA) synthetase and (ii) ester bond formation between an isoprenoid alcohol and isoprenoyl-CoA catalyzed, most likely, by an isoprenoid wax ester synthase similar to an acyl wax ester synthase, wax ester synthase/diacylglycerol acyltransferase (WS/DGAT), recently described from Acinetobacter sp. strain ADP1. We used the recently released rough draft genome sequence of a closely related strain, M. aquaeolei VT8, to search for WS/DGAT and acyl-CoA synthetase candidate genes. The sequence information from putative WS/DGAT and acyl-CoA synthetase genes identified in this strain was used to clone homologues from the isoprenoid wax ester synthesizing Marinobacter strain. The activities of the recombinant enzymes were characterized, and two new isoprenoid wax ester synthases capable of synthesizing isoprenoid ester and acyl/isoprenoid hybrid ester in vitro were identified along with an isoprenoid-specific CoA synthetase. One of the Marinobacter wax ester synthases displays several orders of magnitude higher activity toward acyl substrates than any previously characterized acyl-WS and may reflect adaptations to available carbon sources in their environments.  相似文献   

8.
Acyl-CoA-dependent O-acyltransferases catalyze reactions in which fatty acyl-CoAs are joined to acyl acceptors containing free hydroxyl groups to produce neutral lipids. In this report, we characterize a human multifunctional O-acyltransferase (designated MFAT) that belongs to the acyl-CoA:diacylglycerol acyltransferase 2/acyl-CoA:monoacylglycerol acyltransferase (MGAT) gene family and is highly expressed in the skin. Membranes of insect cells and homogenates of mammalian cells overexpressing MFAT exhibited significantly increased MGAT, acyl-CoA:fatty acyl alcohol acyltransferase (wax synthase), and acyl-CoA:retinol acyltransferase (ARAT) activities, which catalyze the synthesis of diacylglycerols, wax monoesters, and retinyl esters, respectively. Furthermore, when provided with the appropriate substrates, intact mammalian cells overexpressing MFAT accumulated more waxes and retinyl esters than control cells. We conclude that MFAT is a multifunctional acyltransferase that likely plays an important role in lipid metabolism in human skin.  相似文献   

9.
We have investigated the esterification by liver membranes of retinol bound to cellular retinol-binding protein (CRBP). When CRBP carrying [3H]retinol as its ligand was purified from rat liver cytosol and incubated with rat liver microsomes, a significant fraction of the [3H]retinol was converted to [3H]retinyl ester. Esterification of the CRBP-bound [3H]retinol, which was maximal at pH 6-7, did not require the addition of an exogenous fatty acyl group. Indeed, when additional palmitoyl-CoA or coenzyme A was provided, the rate of esterification increased either very slightly or not at all. The esterification reaction had a Km for [3H]retinol-CRBP of 4 +/- 0.6 microM and a maximum velocity of 145 +/- 52 pmol/min/mg of microsomal protein (n = 4). The major products were retinyl palmitate/oleate and retinyl stearate in a ratio of approximately 2 to 1 over a range of [3H]retinol-CRBP concentrations from 1 to 8 microM. The addition of progesterone, a known inhibitor of the acyl-CoA:retinol acyltransferase reaction, consistently increased the rate of retinyl ester formation when [3H]retinol was delivered bound to CRBP. These experiments indicate that retinol presented to liver microsomal membranes by CRBP can be converted to retinyl ester and that this process, in contrast to the esterification of dispersed retinol, is independent of the addition of an activated fatty acid and produces a pattern of retinyl ester species similar to that observed in intact liver. A possible role of phospholipids as endogenous acyl donors in the esterification of retinol bound to CRBP is supported by our observations that depletion of microsomal phospholipid with phospholipase A2 prior to addition of retinol-CRBP decreased the retinol-esterifying activity almost 50%. Conversely, incubating microsomes with a lipid-generating system containing choline, CDP-choline, glycerol 3-phosphate, and an acyl-CoA-generating system prior to addition of retinol-CRBP increased retinol esterification significantly as compared to buffer-treated controls.  相似文献   

10.
Acyl coenzyme A:retinol acyltransferase activity was identified in the microsomes from a polar bear liver. The highest rate of in vitro retinol esterification was 821 pmol/min/mg microsomal protein. The in vitro esterification rate displayed a small dependence upon the concentration of exogenous protein (bovine serum albumin) and even less on the concentration of sulfhydryl-reducing agent (dithiothreitol). Vitamin A was present in the liver at a concentration of 8050 micrograms/g tissue, with 98% of the vitamin in its ester form. Retinyl palmitate was 37.3% of the total liver retinyl esters, while retinyl oleate represented 20.9%, stearate 12.8%, and linoleate 7.7%.  相似文献   

11.
Retinol esterification by microsomal acyl coenzyme A:retinol acyltransferase was quantified in rat mammary tumor and liver tissue. Acyltransferase activity in the livers of mammary tumor-bearing rats was 40% of that in normal animals. In response to daily oral doses of 2 mg retinyl acetate for 18-19 days, activity increased 2.8-fold in transplanted rat mammary tumors, 4.1-fold in the livers of tumor-bearing rats, and 1.5-fold in the livers of normal rats. The in vitro esterification of retinol was competitively inhibited by all-trans-N-(4-hydroxyphenyl) retinamide (Ki = 154 microM).  相似文献   

12.
Retinoic acid (RA) is a potent signaling molecule that is essential for many biological processes, and its levels are tightly regulated by mechanisms that are only partially understood. The synthesis of RA from its precursor retinol (vitamin A) is an important regulatory mechanism. Therefore, the esterification of retinol with fatty acyl moieties to generate retinyl esters, the main storage form of retinol, may also regulate RA levels. Here we show that the neutral lipid synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) functions as the major acyl-CoA:retinol acyltransferase (ARAT) in murine skin. When dietary retinol is abundant, DGAT1 deficiency results in elevated levels of RA in skin and cyclical hair loss; both are prevented by dietary retinol deprivation. Further, DGAT1-deficient skin exhibits enhanced sensitivity to topically administered retinol. Deletion of the enzyme specifically in the epidermis causes alopecia, indicating that the regulation of RA homeostasis by DGAT1 is autonomous in the epidermis. These findings show that DGAT1 functions as an ARAT in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity. Our findings may have implications for human skin or hair disorders treated with agents that modulate RA signaling.Regulation of cellular proliferation and differentiation of epithelial tissues is crucial in embryonic development and in adult homeostasis. Retinoic acid (RA)2 is a major regulator of these processes (1) through its ability to serve as a ligand for RA nuclear receptors (RARs) (2). Since RA is such a potent signaling molecule, its levels must be tightly controlled. Indeed, excess RA is highly teratogenic during embryonic development and may be toxic to adult tissues (3). Further, RA is used therapeutically for skin disorders, such as acne and psoriasis, and certain cancers (4), but its uses are often limited by local and systemic toxicity. Thus, understanding how RA levels are regulated has important biological and clinical relevance.The synthesis of RA from its precursor retinol, or vitamin A, is a major node in the regulation of RA levels (5). To generate RA, retinol is oxidized in two sequential reactions, catalyzed by retinol and retinal dehydrogenases (5), whose activities regulate RA homeostasis. We hypothesized that the availability of retinol for these reactions may also be regulated by the balance between retinol and retinyl esters. Indeed, the majority of retinol in the body is stored as retinyl esters, which are concentrated in cytosolic lipid droplets of cells and serve as a local source of retinol. Retinyl esters are also stored in major organs, such as liver and white adipose tissue (WAT), from which retinol can be mobilized to supply other tissues during increased demand. Thus, retinol esterification may participate in regulating the retinol pool available for RA synthesis.Retinol esterification is carried out by two distinct enzymatic activities. One is mediated by lecithin:retinol acyltransferase (LRAT), which catalyzes the covalent joining of a fatty acyl moiety from lecithin (phosphatidylcholine) to retinol that is bound to cellular retinol-binding protein (CRBP) (6, 7). LRAT activity is crucial for maintaining tissue retinol stores. LRAT-null (Lrat-/-) mice have severe reductions in hepatic and lung retinyl ester levels (810), which are accompanied by testicular hypoplasia/atrophy (9) and blindness (8). Retinyl ester levels are normal in WAT and several other tissues, indicating alternative mechanisms for retinol esterification (9, 10). This esterification is probably mediated in part by acyl CoA:retinol acyltransferase (ARAT) enzymes, which use fatty acyl-CoA and unbound retinol as substrates (11). Although many tissues exhibit ARAT activity (12), attempts to purify and clone an ARAT gene were unsuccessful, and thus molecular tools to study ARAT activity have been lacking. However, the enzyme encoded by Dgat1, an acyl CoA:diacylglycerol acyltransferase (DGAT), was recently reported to catalyze the ARAT reaction in vitro (13, 14). Moreover, several tissues of Dgat1-/- mice had reduced ARAT activity, and retinol esterification was reduced in cultured murine embryonic fibroblasts lacking DGAT1 (14). Most recently, a study of Dgat1-/- mice demonstrated a role for the enzyme in retinol absorption in the small intestine (15). Thus, accumulating evidence indicates that the retinol esterification activity of DGAT1 is of biological, and possibly clinical, importance.In the current study, we investigated whether retinol esterification by DGAT1 is important in murine skin. Dgat1-/- mice exhibit a pleiotropic phenotype, which includes resistance to diet-induced obesity and altered energy metabolism but also includes prominent phenotypic findings in the skin (1619). Retinoids play key roles in skin and hair biology (20), and excess retinoids induce epidermal hyperplasia, inhibit sebocyte proliferation and differentiation, and alter hair growth (21). Notably, the skin manifestations of Dgat1-/- mice, which include alopecia and sebaceous gland atrophy (18), resemble those of retinoid toxicity (22, 23). Thus, we hypothesized that DGAT1 functions as an ARAT in murine skin and that the absence of DGAT1 alters retinoid homeostasis. In this study, we tested this hypothesis by examining retinoid metabolism in the skin of DGAT1-deficient mice.  相似文献   

13.
The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria.  相似文献   

14.
We have examined retinol esterification in the established GRX cell line, representative of hepatic stellate cells, and in primary cultures of ex vivo purified murine hepatic stellate cells. The metabolism of [3H]retinol was compared in cells expressing the myofibroblast or the lipocyte phenotype, under the physiological retinol concentrations. Retinyl esters were the major metabolites, whose production was dependent upon both acyl-CoA:retinol acyltransferase (ARAT) and lecithin:retinol acyltransferase (LRAT). Lipocytes had a significantly higher esterification capacity than myofibroblasts. In order to distinguish the intrinsic enzyme activity from modulation of retinol uptake and CRBP-retinol content of the cytosol in the studied cells, we monitored enzyme kinetics in the purified microsomal fraction. We found that both LRAT and ARAT activities were induced during the conversion of myofibroblasts to lipocytes. LRAT induction was dependent upon retinoic acid, while that of ARAT was dependent upon the overall induction of the fat storing phenotype. The fatty acid composition of retinyl-esters suggested a preferential inclusion of exogenous fatty acids into retinyl esters. We conclude that both LRAT and ARAT participate in retinol esterification in hepatic stellate cells: LRAT's activity correlates with the vitamin A status, while ARAT depends upon the availability of fatty acyl-CoA and the overall lipid metabolism in hepatic stellate cells.  相似文献   

15.
Lecithin:retinol acyltransferase in retinal pigment epithelial microsomes   总被引:1,自引:0,他引:1  
Microsomal preparations from retinal pigment epithelium carry out phosphatidylcholine synthesis upon incubation with 1-palmitoyllysophosphatidylcholine and fatty acyl-CoA. Phosphatidylcholine synthesized in situ in this manner is an acyl donor for retinyl ester synthesis, demonstrating the existence of lecithin:retinol acyltransferase. Although acyl transfer to retinol is from the 1-position of phosphatidylcholine, the fatty acid in the 2-position is important in substrate recognition. The finding of this novel enzyme activity in retinal pigment epithelial microsomes suggests that phosphatidylcholine is the endogenous acyl donor in CoA-independent retinol esterification observed in these preparations.  相似文献   

16.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at -40 degrees C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

17.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at −40°C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

18.
Buszczak M  Lu X  Segraves WA  Chang TY  Cooley L 《Genetics》2002,160(4):1511-1518
During Drosophila oogenesis, defective or unwanted egg chambers are eliminated during mid-oogenesis by programmed cell death. In addition, final cytoplasm transport from nurse cells to the oocyte depends upon apoptosis of the nurse cells. To study the regulation of germline apoptosis, we analyzed the midway mutant, in which egg chambers undergo premature nurse cell death and degeneration. The midway gene encodes a protein similar to mammalian acyl coenzyme A: diacylglycerol acyltransferase (DGAT), which converts diacylglycerol (DAG) into triacylglycerol (TAG). midway mutant egg chambers contain severely reduced levels of neutral lipids in the germline. Expression of midway in insect cells results in high levels of DGAT activity in vitro. These results show that midway encodes a functional DGAT and that changes in acylglycerol lipid metabolism disrupt normal egg chamber development in Drosophila.  相似文献   

19.
Retinol esterification was examined in microsomes from rat liver and lactating mammary gland as a function of the form of retinol substrate, dependence on fatty acyl CoA, and sensitivity to phenylmethylsulfonyl fluoride (PMSF). Retinol bound to cellular retinol-binding protein (CRBP) or dispersed in solvent was esterified in a fatty acyl CoA-independent, PMSF-sensitive reaction, consistent with lecithin:retinol acyltransferase (LRAT) activity. LRAT activity exhibited the same Km (2 microM retinol) between tissues but a higher Vmax in liver as compared to that in mammary gland (47 vs 8 pmol/min/mg microsome protein, respectively). Solvent-dispersed retinol was also esterified in a fatty acyl CoA-dependent, PMSF-resistant reaction, consistent with acyl CoA:retinol acyltransferase (ARAT) activity. Retinol bound to CRBP was not a good substrate for this reaction. ARAT activity displayed a similar Vmax (300 pmol/min/mg microsome protein) between tissues but Km values of 15 and 5 microM for retinol and fatty acyl CoA in mammary gland as compared to 30 and 25 microM, respectively, in the liver. Thus, when substrate was near or below Km, retinol esterification occurred predominantly by LRAT in the liver and ARAT in the mammary gland, respectively. The concentration of CRBP in the cytosol, determined by Western blotting, was approximately 2 microM in the liver but was almost nondetectable in the mammary gland. These data suggest that retinol esterification is regulated via different mechanisms in liver and mammary gland and support a specific role for CRBP in the liver.  相似文献   

20.
The bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter sp. strain ADP1 (formerly Acinetobacter calcoaceticus ADP1) mediating the biosyntheses of wax esters and triacylglycerols was used for the in vivo and in vitro biosynthesis of thio wax esters and dithio wax esters. For in vitro biosynthesis, 5'His(6)WS/DGAT comprising an N-terminal His(6) tag was purified from the soluble protein fraction of Escherichia coli Rosetta(DE3)pLysS (pET23a::5'His(6)atf). By employing SP-Sepharose high-pressure and Ni-nitrilotriacetic acid fast-protein liquid chromatographies, a 19-fold enrichment with a final specific activity of 165.2 nmol mg of protein(-1) min(-1) was achieved by using 1-hexadecanol and palmitoyl-CoA as substrates. Incubation of purified 5'His(6)WS/DGAT with 1-hexadecanethiol and palmitoyl-CoA as substrates resulted in the formation of palmitic acid hexadecyl thio ester (10.4% relative specific activity of a 1-hexadecanol control). Utilization of 1,8-octanedithiol and palmitoyl-CoA as substrates led to the formation of 1-S-monopalmitoyloctanedithiol and minor amounts of 1,8-S-dipalmitoyloctanedithiol (59.3% relative specific activity of a 1-hexadecanol control). The latter dithio wax ester was efficiently produced when 1-S-monopalmitoyloctanedithiol and palmitoyl-CoA were used as substrates (13.4% specific activity relative to that of a 1-hexadecanol control). For the in vivo biosynthesis of thio wax esters, the knockout mutant Acinetobacter sp. strain ADP1acr1OmegaKm, which is unable to produce fatty alcohols, was used. Cultivation of Acinetobacter sp. strain ADP1acr1OmegaKm in the presence of gluconate, 1-hexadecanethiol, and oleic acid in nitrogen-limited mineral salts medium resulted in the accumulation of unusual thio wax esters that accounted for around 1.19% (wt/wt) of the cellular dry weight and consisted mainly of oleic acid hexadecyl thioester as revealed by gas chromatography-mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号