首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Sticholysin I is an actinoporin, a pore forming toxin, of 176 aminoacids produced by the sea anemone Stichodactyla heliantus. Isotopically labelled 13C/15N recombinant protein was produced in E. coli. Here we report the complete NMR 15N, 13C and 1H chemical shifts assignments of Stn I at pH 4.0 and 25°C (BMRB No. 15927).  相似文献   

7.
8.
9.
10.
11.
Ras homologue enriched in brain (Rheb) is a small GTPase that plays an important role in tuberous sclerosis. Here we present the backbone assignments of activated rRheb in complex with the non-hydrolisable GTP analogue GppNHp. These assignments now provide a basis for the analysis of rRheb’s interaction with putative effectors in order to further elucidate the physiological function of this GTPase and its role in the regulation of neuronal cell volume as well as in tuberous sclerosis.  相似文献   

12.
13.
14.
15.
S100 proteins belong to the EF-hand family of calcium binding proteins. Upon calcium binding, these proteins undergo a conformational change to expose a hydrophobic region necessary for target protein interaction. One member of the S100 protein family is S100A11, first isolated from chicken gizzard and termed calgizzarin. It was later isolated from other organisms and tissues including human placenta, pig heart and rabbit lung. The physiological target of S100A11 is thought to be annexin I, a phospholipid-binding protein involved in EGF receptor sorting. This work reports the 1H, 15N and 13C resonance assignments of rabbit apo-S100A11 determined using 15N, 13C-labelled protein and multidimensional NMR spectroscopy.  相似文献   

16.
Rheb (Ras homologue enriched in brain) is a small GTPase that plays an important role in tuberous sclerosis. Here we present the backbone assignments of rRheb in its GDP-bound state. These assignments now provide a basis for the analysis of the interaction of rRheb with putative factors in order to elucidate the function of this GTPase and its role in the MAP kinase pathway of neuronal cells and in tuberous sclerosis.  相似文献   

17.
18.
Summary It is demonstrated that sequential resonance assignment of the backbone 1H and 15N resonances of proteins can be obtained without recourse to the backbone amide protons, an approach which should be useful for assignment of regions with rapidly exchanging backbone amide protons and for proteins rich in proline residues. The method relies on the combined use of two 2D experiments, HA(CA)N and HA(CACO)N or their 3D analogs, which correlate 1H with the intraresidue 15N and with the 15N resonance of the next residue. The experiments are preferably conducted in D2O, where very high resolution in the 15N dimension can be achieved by using 2H decoupling. The approach is demonstrated for a sample of human ubiquitin, uniformly enriched in 13C and 15N. Complete backbone and 13C/1H resonance assignments are presented.  相似文献   

19.
Triple resonance HCN and HCNCH experiments used in studies of 13C/15N labeled oligonucleotides include extended evolution periods (typically up to 100 ms) to allow coherence transfer through a complex heteronuclear spin network. Unfortunately, most of the magnetization is lost during the evolution due to fast spin–spin relaxation dominated by one-bond 1H–13C dipolar interaction. As demonstrated recently, the sensitivity of the experiments can be dramatically improved by keeping the spin system in a state of proton–carbon multiple-quantum coherence, which is not affected by the strong dipolar coupling. However, the multiple-quantum coherence is very sensitive to homonuclear as well as long-range heteronuclear interactions. Unwanted magnetization transfer due to these interactions can reduce the sensitivity back to the level of a single-quantum experiment and, for some spin moieties, even eliminate the signal completely. In the present paper we show that a modified HCN scheme that refocuses the interfering coherences improves sensitivity routinely by a factor of 1.5 to 4 over a nonselective experiment. In addition, novel multiple-quantum 2D and 3D HCNCH experiments with substantially enhanced sensitivity are presented.  相似文献   

20.
Triple resonance HN(COCA)NH pulse sequences for correlating 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins that utilize overlapping coherence transfer periods provide increased sensitivityrelative to pulse sequences that utilize sequential coherence transfer periods. Although theoverlapping sequence elements reduce the overall duration of the pulse sequences, theprincipal benefit derives from a reduction in the number of 180° pulses. Two versions of thetechnique are presented: a 3D (H)N(COCA)NH experiment that correlates 15N(i),1H(i-1), and 15N(i-1) spins, and a 3D HN(COCA)NH experiment that correlates 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins by simultaneously encoding the 1H(i) and 15N(i) chemical shiftsduring the t1 evolution period. The methods are demonstrated on a 13C/15N-enriched sampleof the protein ubiquitin and are easily adapted for application to 2H/13C/15N-enrichedproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号