首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper clarifies the role of cytochrome c in Pseudomonas AM1 by measuring the stoicheiometry of proton translocation driven by respiration of endogenous or added substrates in wild-type bacteria and in a mutant lacking cytochrome c (mutant PCT76). The maximum -->H(+)/O ratio (protons translocated out of the bacteria per atom of oxygen consumed during respiration) was about 4 and, except when respiration was markedly affected, this ratio was similar in mutant and wild-type bacteria. The -->H(+)/O ratios were unaltered when the usual oxidase (cytochrome a(3)) was inhibited by 300mum-KCN and respiration involved the single cytochrome b functioning as an alternative oxidase. Ratios measured in cells respiring endogenous substrate and in cells loaded with malate or 3-hydroxybutyrate suggest that there are two proton-translocating segments operating during the oxidation of NADH. By contrast, during oxidation of formaldehyde or methylamine only one pair of protons is translocated. Proton translocation could not be measured with methanol as substrate, because its oxidation was inhibited (90-95%) by 5mm-KSCN. It is tentatively proposed that the electron-transport chain for NADH oxidation in Pseudomonas AM1 is arranged such that the NADH-ubiquinone oxidoreductase forms one proton-translocating segment and the second segment consists of ubiquinone and cytochromes b and a/a(3). The cytochrome c appears to be essential only for respiration and proton translocation from methanol (and possibly from methylamine); there is no conclusive evidence that cytochrome c ever mediates between cytochromes b and a/a(3) in Pseudomonas AM1.  相似文献   

3.
Growth of Pseudomonas C on C1 compounds: a correction.   总被引:1,自引:0,他引:1       下载免费PDF全文
On reexamination Pseudomonas C was found to be incapable of growth on formaldehyde or formate as a sole carbon source and to contain a hexose phosphate synthase activity when grown on methanol.  相似文献   

4.
5.
C1 organic sulfides are part of many ecosystems and play an important role in the global sulfur budget and climate regulation. At this point, fluxes and conversions of these compounds are only superficially understood. Understanding of the regulating mechanisms will be necessary to quantify the role of these compounds in the global sulfur budget at their climatic role. In this review, the current knowledge of fluxes and conversions of C1 organic sulfides in different ecosystems is presented.Abbreviations CCN cloud condensation nuclei - COS carbonylsulfide - DMS dimethylsulfide - DMDS dimethyldisulfide - DMSO dimethylsulfoxide - DMSO2 dimethylsulfurdioxide - DMSP dimethylsulfoniopropionate - MA methylamine - 3-MPA 3-mercaptopropionate - MPPA 3-methiolpropionate - MT methanethiol  相似文献   

6.
Chorismate derived C6C1 compounds in plants   总被引:6,自引:0,他引:6  
Mustafa NR  Verpoorte R 《Planta》2005,222(1):1-5
  相似文献   

7.
The concentration of glutathione (GSH) in bacteria is many-fold less than in mammalian cells except forEscherichia coli, where the GSH level is similar to that of mammalian tissues. On the basis of our observation that GSH in a B strain, ATCC 29682, was reduced (>80%) by exposure to oxidants while a K-12 strain (AB 1157) was minimally affected (<20%), we constructed a B strain GSH-deficient mutant that exhibited antioxidant enzyme activities similar to the wild strain. We successfully transduced thegsh A:: Tn10Km allele from JTG-10, a GSH-deficient K-12 strain, to ATCC 29682, the GSH-sufficient B strain. Compared with ATCC 29682, the growth of the GSH-deficient B mutant, designated RCI-1, was more sensitive to the presence of thiol-reactive chemicals. However, no difference was found between GSH-sufficient and -deficient strains in lethality following exposure to the same thiol-reactive chemicals. Thus, GSH inE. coli B is important in maintaining growth in the presence of oxidants but does not affect oxidant lethality.  相似文献   

8.
9.
10.
We recently described in C. elegans embryos, the acquisition of specialized functions for orthologs of yeast Atg8 (e.g., mammalian MAP1LC3/LC3) in allophagy, a selective and developmentally regulated autophagic process. During the formation of double-membrane autophagosomes, the ubiquitin-like Atg8/LC3 proteins are recruited to the membrane through a lipidation process. While at least 6 orthologs and paralogs are present in mammals, C. elegans only possesses 2 orthologs, LGG-1 and LGG-2, corresponding to the GABARAP-GABARAPL2/GATE-16 and the MAP1LC3 families, respectively. During allophagy, LGG-1 acts upstream of LGG-2 and is essential for autophagosome biogenesis, whereas LGG-2 facilitates their maturation. We demonstrated that LGG-2 directly interacts with the HOPS complex subunit VPS-39, and mediates the tethering between autophagosomes and lysosomes, which also requires RAB-7. In the present addendum, we compared the localization of autophagosomes, endosomes, amphisomes, and lysosomes in vps-39, rab-7, and lgg-2 depleted embryos. Our results suggest that lysosomes interact with autophagosomes or endosomes through a similar mechanism. We also performed a functional complementation of an lgg-1 null mutant with human GABARAP, its closer homolog, and showed that it localizes to autophagosomes and can rescue LGG-1 functions in the early embryo.  相似文献   

11.
《Autophagy》2013,9(10):1868-1872
We recently described in C. elegans embryos, the acquisition of specialized functions for orthologs of yeast Atg8 (e.g., mammalian MAP1LC3/LC3) in allophagy, a selective and developmentally regulated autophagic process. During the formation of double-membrane autophagosomes, the ubiquitin-like Atg8/LC3 proteins are recruited to the membrane through a lipidation process. While at least 6 orthologs and paralogs are present in mammals, C. elegans only possesses 2 orthologs, LGG-1 and LGG-2, corresponding to the GABARAP-GABARAPL2/GATE-16 and the MAP1LC3 families, respectively. During allophagy, LGG-1 acts upstream of LGG-2 and is essential for autophagosome biogenesis, whereas LGG-2 facilitates their maturation. We demonstrated that LGG-2 directly interacts with the HOPS complex subunit VPS-39, and mediates the tethering between autophagosomes and lysosomes, which also requires RAB-7. In the present addendum, we compared the localization of autophagosomes, endosomes, amphisomes, and lysosomes in vps-39, rab-7, and lgg-2 depleted embryos. Our results suggest that lysosomes interact with autophagosomes or endosomes through a similar mechanism. We also performed a functional complementation of an lgg-1 null mutant with human GABARAP, its closer homolog, and showed that it localizes to autophagosomes and can rescue LGG-1 functions in the early embryo.  相似文献   

12.
  1. Download : Download high-res image (106KB)
  2. Download : Download full-size image
  相似文献   

13.
Succinate (or a product of succinate metabolism) is a catabolite repressor of some enzymes of the serine pathway (hydroxypyruvate reductase, serine-glyoxylate aminotransferase and glycerate kinase) but not of methanol dehydrogenase nor methylamine dehydrogenase. A mutant (PCT64) of Pseudomonas AM1, which is unable to grow on C(1) compounds, lacks glycerate kinase, showing that this enzyme is essential for the operation of the serine pathway. Mutant PCT48, unable to convert acetate into glycollate, has lost the ability to grow both on C(1) compounds and on ethanol. The properties of a third mutant (PCT57) show that Pseudomonas AM1 contains enzymes catalysing the conversion of acetate into glyoxylate. Evidence is presented that hydroxypyruvate reductase is involved in the oxidation of glycollate to glyoxylate during growth on ethanol. A scheme is proposed for the conversion of ethanol and of C(1) compounds into glyoxylate in which acetate (or a derivative) and glycollate are intermediates.  相似文献   

14.
15.
Activation of phosphatidylcholine-specific phospholipase D (PLD) constitutes an important part of the cellular response to agonist signaling. PLD1 is stimulated in vitro in a direct and synergistic manner by protein kinase C (PKC), ADP-ribosylation factor (ARF) and Rho family members. However, the direct and specific role of each of these effectors in agonist-stimulated PLD activation is poorly understood. We have used transposon mutagenesis to generate a library of PLD1 alleles containing random pentapeptide insertions. Forty-five alleles were characterized to identify functionally important regions. Use of an allele unresponsive to PKC, but otherwise seemingly normal, to examine coupling of PLD1 to a subset of G-protein-coupled receptors demonstrates for the first time direct stimulation of PLD1 in vivo by PKC and reveals that this direct stimulation is unexpectedly critical for PLD1 activation.  相似文献   

16.
The distribution of two glial antigens (C1 and M1) has been studied by indi-rect immunofluorescence during postnatal development of the cerebella of normal and neurologically mutant mice (weaver, staggerer, reeler, Purkinje cell degeneration, and wobbler). During the first postnatal week of normal development, C1 antigen is expressed in ependyma, Bergmann glial fibers (BG), and astrocytes of the internal granular layer and white matter. After day 10, C1 antigen is restricted to BG and ependymal cells. During the sec-ond and third week, BG undergo a transient loss of C1 antigen that starts in medioventral areas and spreads in a gradient dorsally and laterally. In reeler, weaver, and staggerer, C1 antigen expression is normal during the first postnatal week, and subsides in BG in a similar spatial gra- dient as described for the normal littermates. However, the loss of C1 anti-gen in BG occurs earlier (first in reeler, then in weaver, and last in staggerer) and is not reversible as it is in normal mice. In Purkinje cell de-generation, C1 antigen expression is diminished in BG after the onset of be-havioral abnormalities. Wobbler is normal with respect to C1 antigen ex-pression at adult ages. M1 antigen is detectable in white matter astrocytes from postnatal day 7 on, and persists in these cells into adulthood. Astrocytes of the internal granular layer and BG express M1 antigen only transiently in normal mice during the second and third weeks. The appearance of M1 antigen in BG occurs in a spatiotemporal gradient, matching the one in which C1 antigen disappears. M1 antigen expression is abnormally maintained in BG of reeler, staggerer, and weaver. In Purkinje cell degeneration, M1 antigen is ex-pressed abnormally at the onset of behavioral abnormalities first in.astro-cytes of the internal granular layer and, with growing age, increasingly also in BG. In wobbler, BG do not express M1 antigen. However, astrocytes of the granular layer are abnormally M1 antigen-positive.  相似文献   

17.
The pathway of CO2 reduction to methane in Methanogenium tationis and Methanogenium thermophilicum is similar to that observed in other methanogens. In M. tationis a novel pterin, tatiopterin, is present. This pterin appears to be a structural and functional analog of methanopterin and sarcinapterin. Folate could not substitute for tatiopterin.  相似文献   

18.
A mutant Rhodococcus strain lacking the ability to utilize 1-chlorohexadecane was found to cis-desaturate aliphatic compounds, such as 1-chlorohexadecane, n-hexadecane, and heptadecanonitrile, yielding corresponding products with a double bond mainly at the ninth carbon from the terminal methyl groups. A new oxidative pathway involving the cis-desaturation step was suggested for alkane utilization by Rhodococcus spp.  相似文献   

19.
Washed cell suspensions ofHyphomicrobium spp. were able to oxidize methanol, formaldehyde and formate. This suggested that enzymes for the oxidation of these compounds were present. The pathway of the oxidation of methanol to carbon dioxide and water has been investigated using cell-free extracts. An ammonium-ion-activated, phenazine methosulphate-linked methanol dehydrogenase was detected. This enzyme has a dual substrate specificity for normal primary alcohols and formaldehyde. It has a high pH optimum for activity of 9.5. The pathway is completed by an NAD-linked formate dehydrogenase. This enzyme is inhibited by low concentrations of potassium cyanide, copper sulphate and hypophosphite.  相似文献   

20.
Streptomyces halstedii K122 was previously found to produce antifungal compounds on solid substrates that inhibit radial growth of fungi among Ascomycetes, Basidiomycetes, Deuteromycetes, Oomycetes, and Zygomycetes, and strongly affected hyphal branching and morphology. During growth of S. halstedii K122 in submerged culture, no antifungal activity could be detected. However, cultivation of S. halstedii in thin (1 mm) liquid substrate layers in large surface-area tissue culture flasks caused intense growth and sporulation of S. halstedii K122, and the biologically active compounds could be extracted from the mycelium with methanol. Antifungal compounds were purified using C18 solid phase extraction and silica gel column chromatography, and identified as bafilomycins B1 and C1, using 2D NMR and FAB MS. Production of bafilomycins, which are specific inhibitors of vacuolar ATPases, has not been reported from S. halstedii previously. Minimum inhibitory concentrations (MIC) of bafilomycins B1 and C1, amphotericin B, and nikkomycin Z were determined at pH 5.5 and 7.0 for the target fungi Aspergillus fumigatus, Mucor hiemalis, Penicillium roqueforti, and Paecilomyces variotii. Penicillium roqueforti was the most sensitive species to all the compounds investigated. The MIC values for amphotericin B were 0.5-4 micrograms.mL-1 for the fungi tested, and pH did not affect the toxicity. The MIC values for nikkomycin Z ranged from < 0.5 microgram.mL-1 for Mucor hiemalis to > 500 micrograms.mL-1 for Aspergillus fumigatus, and pH had no influence on toxicity. Bafilomycins B1 and C1 were equally active against the fungal species tested, with MIC values in the range of < 0.5-64 micrograms.mL-1. All fungi were more sensitive to both bafilomycin B1 and C1 at pH 7.0 than at pH 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号