共查询到20条相似文献,搜索用时 0 毫秒
1.
Yakoby N Bristow CA Gouzman I Rossi MP Gogotsi Y Schüpbach T Shvartsman SY 《Systems biology》2005,152(4):276-284
This paper describes computational and experimental work on pattern formation in Drosophila egg development (oogenesis), an established experimental model for studying cell fate diversification in developing tissues. Epidermal growth factor receptor (EGFR) is a key regulator of pattern formation and morphogenesis in Drosophila oogenesis. EGFR signalling in oogenesis can be genetically manipulated and monitored at many levels, leading to large sets of heterogeneous data that enable the formulation of increasingly quantitative models of pattern formation in these systems. 相似文献
2.
Ultrastructural observations on oogenesis in Drosophila 总被引:4,自引:0,他引:4
A P Mahowald 《Journal of morphology》1972,137(1):29-48
The ultrastructure of the follicle cells and oocyte periplasm is described during the stages of oogenesis immediately prior to, during, and immediately subsequent to, vitellogenesis. A number of features have not been described previously in Drosophila. Some yolk appears prior to pinocytosis of blood proteins. However, most of the protein yolk forms while the periplasm is filled with micropinocytotic invaginations and tubules derived from the oolemma. These tubules retain the internal layer of material characteristic of coated vesicles and are found to fuse with yolk spheres. No accumulation of electron-dense material in the endoplasmic reticulum or Golgi of the oocyte is found. Both trypan blue and ferritin are accumulated by the oocyte. The follicle cells have an elaborate endoplasmic reticulum during the period of maximum yolk accumulation. Adjacent cells are joined at their base by a zonula adhaerens, forming a band around the cells, and by plaques of gap junctions. Gap junctions are also present between nurse cells and follicle cells. During chorion formation, septate junctions also appear between follicle cells, adjacent to the zonula adhaerens. 相似文献
3.
4.
5.
Enzymatic studies of DNA repair in Drosophila melanogaster 总被引:1,自引:0,他引:1
W A Deutsch 《Mutation research》1987,184(3):209-215
Thus far, our studies in Drosophila have concentrated primarily on the various enzymes involved in the in vitro repair of modified or nonconventional DNA substrates. In some cases, our findings have led us to investigate events that may not have a bearing on DNA repair, but rather may be associated with developmental signals important to the maturation of the organism. As appealing as some of these models seem, however, they must await confirmation through detailed genetic studies before any substantial conclusions can be drawn. This combination of genetic and biochemical knowledge makes Drosophila an exciting organism for an eventual detailed understanding of the developmental expression and cellular location of DNA-repair systems. 相似文献
6.
7.
Nezis IP Stravopodis DJ Papassideri I Robert-Nicoud M Margaritis LH 《European journal of cell biology》2000,79(9):610-620
In the present study we demonstrate the existence of two apoptotic patterns in Drosophila nurse cells during oogenesis. One is developmentally regulated and normally occurs at stage 12 and the other is stage-specific and is sporadically observed at stages 7 and 8 of abnormally developed follicles. The apoptotic manifestation of the first pattern begins at stage 11 and is marked by a perinuclear rearrangement of the actin cytoskeleton and the development of extensive lobes and engulfments of the nurse cell nuclei located proximal to the oocyte. Consequently, at late stage 12 (12C), half of the nurse cell nuclei exhibit condensed chromatin, while at late stage 13 all the nuclei have fragmented DNA, as it is clearly shown by TUNEL assay. Finally, the apoptotic vesicles that are formed during stage 13, are phagocytosed by the neighboring follicle cells and at stage 14 the nurse cell nuclear remnants can be easily detected within the adjacent follicle cell phagosomes. In the second sporadic apoptotic pattern, all the nurse cell nuclei are highly condensed with fragmented DNA, accompanied by a completely disorganized actin cytoskeleton. When we induced apoptosis in Drosophila follicles through an etoposide and staurosporine in vitro treatment, we observed a similar pattern of stage-specific cell death at stages 7 and 8. These observations suggest a possible protective mechanism throughout Drosophila oogenesis that results in apoptosis of abnormal, damaged or spontaneously mutated follicles before they reach maturity. 相似文献
8.
9.
Recent work on Drosophila oogenesis has uncovered connections between cell-cycle checkpoints and pattern formation. Genes of the spindle class, which encode double-strand break repair enzymes and RNA helicases, affect oocyte polarity and the decision whether to differentiate as an oocyte or a nurse cell. 相似文献
10.
Recent advances shed light on the cellular processes that cooperate during oogenesis to produce a fully patterned egg, containing all the maternal information required for embryonic development. Progress has been made in defining the early steps in oocyte specification and it has been shown that progression of oogenesis is controlled by a meiotic checkpoint and requires active maintenance of the oocyte cell fate. The function of Gurken signalling in patterning the dorsal-ventral axis later in oogenesis is better understood. Anterior-posterior patterning of the embryo requires activities of bicoid and oskar mRNAs, localised within the oocyte. A microtubule motor, Kinesin, is directly implicated in localisation of oskar mRNA to the posterior pole of the oocyte. 相似文献
11.
Ioannis P. Nezis Bhupendra V. Shravage Antonia P. Sagona Trond Lamark Geir Bj?rk?y Terje Johansen Tor Erik Rusten Andreas Brech Eric H. Baehrecke Harald Stenmark 《The Journal of cell biology》2010,190(4):523-531
Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death. 相似文献
12.
13.
About 184P[lac, ry+]A insertions (O'Kane & Gehring, 1987) have been incorporated into the genome via P element-mediated transformation. The temporal-spatial localization of beta-galactosidase, synthesized by these insertions during oogenesis, is described. 32% present control levels of endogenous beta-galactosidase expression and 68% show novel patterns. 13% of the insertions are germline-specific; 33%, follicle-cell-specific; 20% are expressed in both germ line and follicle cells; and 2%, specific to the germarium. Several lines exhibit strict temporal-spatial localizations of beta-galactosidase; notably those expressed in specific populations of follicle cells. The results are discussed with respect to some of the positional information encoded in the genome to which the insertions respond, the use of the insertions as markers for cell differentiation and the potential of the technique for isolating new genes involved in egg production. 相似文献
14.
15.
16.
SET domain proteins are histone lysine methyltransferases (HMTs) that play essential roles in development. Here we show for the first time that histone methylation occurs in both the germ cells and somatic cells of the Drosophila ovary, and demonstrate in vivo that an HMT, the product of the eggless (egg) gene, is required for oogenesis. Egg is a SET domain protein that is similar to the human protein SETDB1 and its mouse ortholog ESET. These proteins are members of a small family of HMTs that contain bifurcated SET domains. Because depletion of SETDB1 in tissue culture cells is cell-lethal, and an ESET mutation causes very early periimplantation embryonic arrest, the role of SETDB1/ESET in development has proven difficult to address. We show that egg is required in the Drosophila ovary for trimethylation of histone H3 at its K9 residue. In females bearing an egg allele that deletes the SET domain, oogenesis arrests at early stages. This arrest is accompanied by reduced proliferation of somatic cells required for egg chamber formation, and by apoptosis in both germ and somatic cell populations. We propose that other closely related SET domain proteins may function similarly in gametogenesis in other species. 相似文献
17.
Goentoro LA Reeves GT Kowal CP Martinelli L Schüpbach T Shvartsman SY 《Developmental cell》2006,11(2):263-272
Quantitative information about the distribution of morphogens is crucial for understanding their effects on cell-fate determination, yet it is difficult to obtain through direct measurements. We have developed a parameter estimation approach for quantifying the spatial distribution of Gurken, a TGFalpha-like EGFR ligand that acts as a morphogen in Drosophila oogenesis. Modeling of Gurken/EGFR system shows that the shape of the Gurken gradient is controlled by a single dimensionless parameter, the Thiele modulus, which reflects the relative importance of ligand diffusion and degradation. By combining the model with genetic alterations of EGFR levels, we have estimated the value of the Thiele modulus in the wild-type egg chamber. This provides a direct characterization of the shape of the Gurken gradient and demonstrates how parameter estimation techniques can be used to quantify morphogen gradients in development. 相似文献
18.
The human BRCA2 cancer susceptibility protein functions in double-strand DNA break repair by homologous recombination and this pathway is conserved in the fly Drosophila melanogaster. Although a potential Drosophila melanogaster BRCA2 orthologue (dmbrca2; CG30169) has been identified by sequence similarity, no functional data addressing the role of this protein in DNA repair is available. Here, we demonstrate that depletion of dmbrca2 from Drosophila cells induces sensitivity to DNA damage induced by irradiation or treatment with hydroxyurea. Dmbrca2 physically interacts with dmrad51 (spnA) and the two proteins become recruited to nuclear foci after DNA damage. A functional assay for DNA repair demonstrated that in flies dmbrca2 plays a role in double-strand break repair by gene conversion. Finally, we show that depletion of dmbrca2 in cells is synthetically lethal with deficiency in other DNA repair proteins including dmparp. The conservation of the function of BRCA2 in Drosophila will allow the analysis of this key DNA repair protein in a genetically tractable organism potentially illuminating mechanisms of carcinogenesis and aiding the development of therapeutic agents. 相似文献
19.
Exit from the cell cycle requires the downregulation of Cyclin/Cdk activity. In the ovary of Drosophila, Encore activity is necessary in the germline to exit the division program after four mitotic divisions. We find that in encore mutant germaria, Cyclin A persists longer than in wild type. In addition, Cyclin E expression is not downregulated after the fourth mitosis and accumulates in a polyubiquitinated form. Mutations in genes coding for components of the SCF pathway such as cul1, UbcD2 and effete enhance the extra division phenotype of encore. We show that Encore physically interacts with the proteasome, Cul1 and Cyclin E. The association of Cul1, phosphorylated Cyclin E and the proteasome 19S-RP subunit S1 with the fusome is affected in encore mutant germaria. We propose that in encore mutant germaria the proteolysis machinery is less efficient and, in addition, reduced association of Cul1 and S1 with the fusome may compromise Cyclin E destruction and consequently promote an extra round of mitosis. 相似文献