首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli possesses two energy-coupled import systems through which substances of low concentration and of a size too large to permit diffusion through the porins are translocated across the outer membrane. Group B colicins, ferric siderophores and vitamin B12 are taken up via the TonB-ExbB-ExbD, group A colicins via the TolA-TolQ-TolR system. Cross-complementation between the two systems was demonstrated in that tolQ tolR mutants transformed with plasmids carrying exbB exbD became sensitive to group A colicins, and exbB exbD mutants transformed with plasmid-encoded tolQ tolR became sensitive to group B colicins. TolQ-TolR interacted through TonB, and ExbB-ExbD interacted through TolA with the outer membrane receptors and colicins. Activity of ExbB ExbD via TolA was higher in cells laciting TonB, and activity of TolQ TolR via TonB was increased when TolA was missing. The very distinct TolA and TonB proteins mediate exclusive interaction with group A and group B receptors, respectively. ExbB-TolR and ExbD-TolQ mixtures showed little if any complementation of exbB exbD and tolQ tolR mutants indicating coevolution of ExbB with ExbD and TolQ with ToIR. Sequence homology and mutual functional substitution of ExbB-ExbD and TolQ-TolR suggest the evolution of the two import systems from a single import system.  相似文献   

2.
Cells of Escherichia coli pump cobalamin (vitamin B12) across their outer membranes into the periplasmic space, and it was concluded previously that this process is potentiated by the proton motive force of the inner membrane. The novelty of such an energy coupling mechanism and its relevance to other outer membrane transport processes have required confirmation of this conclusion by studies with cells in which cobalamin transport is limited to the outer membrane. Accordingly, I have examined the effects of cyanide and of 2,4-dinitrophenol on cobalamin uptake in btuC and atp mutants, which lack inner membrane cobalamin transport and the membrane-bound ATP synthase, respectively. Dinitrophenol eliminated cobalamin transport in all strains, but cyanide inhibited this process only in atp and btuC atp mutant cells, providing conclusive evidence that cobalamin transport across the outer membrane requires specifically the proton motive force of the inner membrane. The coupling of metabolic energy to outer membrane cobalamin transport requires the TonB protein and is stimulated by the ExbB protein. I show here that the tolQ gene product can partly replace the function of the ExbB protein. Cells with mutations in both exbB and tolQ had no measurable cobalamin transport and thus had a phenotype that was essentially the same as TonB-. I conclude that the ExbB protein is a normal component of the energy coupling system for the transport of cobalamin across the outer membrane.  相似文献   

3.
Vibrio cholerae was found to have two sets of genes encoding TonB, ExbB and ExbD proteins. The first set ( tonB1, exbB1, exbD1 ) was obtained by complementation of a V. cholerae tonB mutant. In the mutant, a plasmid containing these genes permitted transport via the known V. cholerae high-affinity iron transport systems, including uptake of haem, vibriobactin and ferrichrome. When chromosomal mutations in exbB1 or exbD1 were introduced into a wild-type V. cholerae background, no defect in iron transport was noted, indicating the existence of additional genes that can complement the defect in the wild-type background. Another region of the V. cholerae chromosome was cloned that encoded a second functional TonB/Exb system ( tonB2, exbB2, exbD2 ). A chromosomal mutation in exbB2 also failed to exhibit a defect in iron transport, but a V. cholerae strain that had chromosomal mutations in both the exbB1 and exbB2 genes displayed a mutant phenotype similar to that of an Escherichia coli tonB mutant. The genes encoding TonB1, ExbB1, ExbD1 were part of an operon that included three haem transport genes ( hutBCD ), and all six genes appeared to be expressed from a single Fur-regulated promoter upstream of tonB1 . A plasmid containing all six genes permitted utilization of haem by an E. coli strain expressing the V. cholerae haem receptor, HutA. Analysis of the hut genes indicated that hutBCD, which are predicted to encode a periplasmic binding protein (HutB) and cytoplasmic membrane permease (HutC and HutD), were required to reconstitute the V. cholerae haem transport system in E. coli. In V. cholerae , the presence of hutBCD stimulated growth when haemin was the iron source, but these genes were not essential for haemin utilization in V. cholerae .  相似文献   

4.
H8 is derived from a collection of Salmonella enterica serotype Enteritidis bacteriophage. Its morphology and genomic structure closely resemble those of bacteriophage T5 in the family Siphoviridae. H8 infected S. enterica serotypes Enteritidis and Typhimurium and Escherichia coli by initial adsorption to the outer membrane protein FepA. Ferric enterobactin inhibited H8 binding to E. coli FepA (50% inhibition concentration, 98 nM), and other ferric catecholate receptors (Fiu, Cir, and IroN) did not participate in phage adsorption. H8 infection was TonB dependent, but exbB mutations in Salmonella or E. coli did not prevent infection; only exbB tolQ or exbB tolR double mutants were resistant to H8. Experiments with deletion and substitution mutants showed that the receptor-phage interaction first involves residues distributed over the protein's outer surface and then narrows to the same charged (R316) or aromatic (Y260) residues that participate in the binding and transport of ferric enterobactin and colicins B and D. These data rationalize the multifunctionality of FepA: toxic ligands like bacteriocins and phage penetrate the outer membrane by parasitizing residues in FepA that are adapted to the transport of the natural ligand, ferric enterobactin. DNA sequence determinations revealed the complete H8 genome of 104.4 kb. A total of 120 of its 143 predicted open reading frames (ORFS) were homologous to ORFS in T5, at a level of 84% identity and 89% similarity. As in T5, the H8 structural genes clustered on the chromosome according to their function in the phage life cycle. The T5 genome contains a large section of DNA that can be deleted and that is absent in H8: compared to T5, H8 contains a 9,000-bp deletion in the early region of its chromosome, and nine potentially unique gene products. Sequence analyses of the tail proteins of phages in the same family showed that relative to pb5 (Oad) of T5 and Hrs of BF23, the FepA-binding protein (Rbp) of H8 contains unique acidic and aromatic residues. These side chains may promote binding to basic and aromatic residues in FepA that normally function in the adsorption of ferric enterobactin. Furthermore, a predicted H8 tail protein showed extensive identity and similarity to pb2 of T5, suggesting that it also functions in pore formation through the cell envelope. The variable region of this protein contains a potential TonB box, intimating that it participates in the TonB-dependent stage of the phage infection process.  相似文献   

5.
The exbBD genes of Pseudomonas aeruginosa PAO were cloned by complementation of the growth defect of an Escherichia coli exbB tolQ double mutant on iron-restricted medium. Nucleotide sequence analysis confirmed that these genes are contiguous and preceded by a second tonB gene in this organism, which we have designated tonB2. lacZ promoter fusions confirmed that expression of the tonB2-exbB-exbD genes is increased under conditions of iron limitation. Deletions within any of these genes, in contrast to deletions in the first tonB gene, tonB1, did not adversely affect growth on iron-restricted medium. On the other hand, tonB1 tonB2 double mutants were more compromised as regards growth in an iron-restricted medium than a tonB1 deletion, indicating that TonB2 could partially replace TonB1 in its role in iron acquisition. TonB1 but not TonB2 deletion strains were also compromised as regards the utilization of hemin or hemoglobin as sole iron sources, indicating that heme transport requires TonB1.  相似文献   

6.
Escherichia coli with mutations in the exb region are impaired in outer membrane receptor-dependent uptake processes. They are resistant to the antibiotic albomycin and exhibit reduced sensitivity to group B colicins. A 2.2-kilobase-pair DNA fragment of the exb locus was sequenced. It contained two open reading frames, designated exbB and exbD, which encoded polypeptides of 244 and 141 amino acids, respectively. Both proteins were found in the cytoplasmic membrane. They showed strong homologies to the TolQ and TolR proteins, respectively, which are involved in uptake of group A colicins and infection by filamentous bacteriophages. exbB and exbD were required to complement exb mutations. Osmotic shock treatment rendered exb mutants sensitive to colicin M, which was taken as evidence that the ExbB and ExbD proteins are involved in transport processes across the outer membrane. It is concluded that the exb- and tol-dependent systems originate from a common uptake system for biopolymers.  相似文献   

7.
Nine classes of group B colicin-resistant mutants were examined to study the role of enterochelin in colicin resistance. Four of the mutants studied (cbt, exbC, exbB, and tonB) hypersecreted enterochelin. Enterochelin hypersecretion was apparently responsible for resistance of the exbC mutant to colicins G and H and for resistance of the exbB mutant to colicins G, H, Ia, Ib, S1, and V. All four mutants scored as colicin B tolerant, even in the absence of enterochelin synthesis. The mutants produced substantially increased amounts of two high-molecular-weight outer membrane polypeptides when grown under limiting iron conditions. The presence of these polypeptides was correlated with increased colicin B-neutralizing activity in the outer membrane preparations.  相似文献   

8.
The tolQ (previously fii) mutation in Escherichia coli K12 inhibits infection by filamentous bacteriophages f1 and IKe but not by RNA-containing phage f2. This work extends these observations to other plasmid-specific bacteriophages including various filamentous. RNA-containing, and lipid-containing isolates. Only tip-adsorbing filamentous phages were affected by tolQ and not shaft-adsorbing ones. Electron microscopy showed that RP4-specific filamentous phage Pf3 was one of the latter kind. Several tip-adsorbing filamentous phages inhibited conjugation between tolQ strains carrying their specific plasmids, implicating the phage receptors (conjugative pili) as mating organelles. tolQ mutant strains were as proficient as their parents in conjugation mediated by a wide range of plasmids.  相似文献   

9.
Mutations in tolQ, previously designated fii, render cells tolerant to high concentrations of colicin A. In addition, a short deletion in the amino-terminal region of colicin A (amino acid residues 16 to 29) prevents its lethal action, although this protein can still bind the receptor and forms channels in planar lipid bilayers in vitro. These defects in translocation across the outer membrane in the tolQ cells or the colicin A mutant cannot be bypassed by osmotic shock. The TolQ protein, which is constitutively expressed at a low level, was studied in recombinant plasmid constructs allowing the expression of various TolQ fusion proteins under the control of the inducible caa promoter. The TolQ protein was thus "tagged" with an epitope from the colicin A protein for which a monoclonal antibody is available. A fusion protein containing the entire TolQ protein plus the 30 N-terminal residues of colicin A was shown to complement the tolQ mutation. Pulse-chase labeling followed by gradient fractionation indicated that the bulk of the overproduced fusion protein was rapidly incorporated into the inner membrane, with small amounts localized to regions corresponding to the attachment sites between inner and outer membranes and to the outer membrane itself. However, most of the protein was rapidly degraded, leaving only that localized to the attachment sites and the outer membrane remaining at very late times of chase.  相似文献   

10.
Microcin-E492-insensitive mutants of Escherichia coli K12   总被引:7,自引:0,他引:7  
Mutations in three Escherichia coli K12 genes, tonB, exbB and the newly discovered semA, reduce sensitivity to the low Mr polypeptide antibiotic microcin E492. The products of the tonB and exbB genes were previously shown to be involved in the uptake of siderophore-complexed iron and in the action of a number of colicins. Strains mutated at or close to semA (collectively referred to as sem mutations) remained fully sensitive to these colicins, and grew as well as wild-type strains under conditions of iron starvation. Expression of a number of sem-lacZ operon fusions was not affected by iron limitation, and sem mutations did not affect the production of iron-regulated outer membrane proteins which are known or thought to be involved in iron uptake. Hfr conjugation and P1 phage transduction experiments indicated that semA is located close to pabB at 40 min on the E. coli K12 chromosome. This places semA close to the mng locus, wherein mutations result in decreased manganese sensitivity. However, strains carrying the semA mutation exhibited increased manganese sensitivity.  相似文献   

11.
Mutations in fii or tolA of the fii-tolA-tolB gene cluster at 17 min on the Escherichia coli map render cells tolerant to high concentrations of the E colicins and do not allow the DNA of infecting single-stranded filamentous bacteriophages to enter the bacterial cytoplasm. The nucleotide sequence of a 1,854-base-pair DNA fragment carrying the fii region was determined. This sequence predicts three open reading frames sequentially coding for proteins of 134, 230, and 142 amino acids, followed by the potential start of the tolA gene. Oligonucleotide mutagenesis of each open reading frame and maxicell analysis demonstrated that all open reading frames are expressed in vivo. Sequence analysis of mutant fii genes identified the 230-amino acid protein as the fii gene product. Chromosomal insertion mutations were constructed in each of the two remaining open reading frames. The phenotype resulting from an insertion of the chloramphenicol gene into the gene coding for the 142-amino acid protein is identical to that of mutations in fii and tolA. This gene is located between fii and tolA, and we propose the designation of tolQRA for this cluster in which tolQ is the former fii gene and tolR is the new open reading frame. The protein products of this gene cluster play an important role in the transport of large molecules such as the E colicins and filamentous phage DNA into the bacterium.  相似文献   

12.
TonB protein appears to couple the electrochemical potential of the cytoplasmic membrane to active transport across the essentially unenergized outer membrane of gram-negative bacteria. ExbB protein has been identified as an auxiliary protein in this process. In this paper we show that ExbD protein, encoded by an adjacent gene in the exb cluster at 65', was also required for TonB-dependent energy transduction and, like ExbB, was required for the stability of TonB. The phenotypes of exbB exbD+ strains were essentially indistinguishable from the phenotypes of exbB+ exbD strains. Mutations in either gene resulted in the degradation of TonB protein and in decreased, but not entirely absent, sensitivities to colicins B and Ia and to bacteriophage phi 80. Evidence that the absence of ExbB or ExbD differentially affected the half-lives of newly synthesized and steady-state TonB was obtained. In the absence of ExbB or ExbD, newly synthesized TonB was degraded with a half-life of 5 to 10 min, while the half-life of TonB under steady-state conditions was significantly longer, approximately 30 min. These results were consistent with the idea that ExbB and ExbD play roles in the assembly of TonB into an energy-transducing complex. While interaction between TonB and ExbD was suggested by the effect of ExbD on TonB stability, interaction of ExbD with TonB was detected by neither in vivo cross-linking assays nor genetic tests for competition. Assays of a chromosomally encoded exbD::phoA fusion showed that exbB and exbD were transcribed as an operon, such that ExbD-PhoA levels in an exbB::Tn10 strain were reduced to 4% of the levels observed in an exbB+ strain under iron-limiting conditions. Residual ExbD-PhoA expression in an exbB::Tn10 strain was not iron regulated and may have originated from within the Tn10 element in exbB.  相似文献   

13.
14.
We investigated the involvement of Tol proteins in the surface expression of lipopolysaccharide (LPS). tolQ, -R, -A and -B mutants of Escherichia coli K-12, which do not form a complete LPS-containing O antigen, were transformed with the O7+ cosmid pJHCV32. The tolA and tolQ mutants showed reduced O7 LPS expression compared with the respective isogenic parent strains. No changes in O7 LPS expression were found in the other tol mutants. The O7-deficient phenotype in the tolQ and tolA mutants was complemented with a plasmid encoding the tolQRA operon, but not with a similar plasmid containing a frameshift mutation inactivating tolA. Therefore, the reduction in O7 LPS was attributed to the lack of a functional tolA gene, caused either by a direct mutation of this gene or by a polar effect on tolA gene expression exerted by the tolQ mutation. Reduced surface expression of O7 LPS was not caused by changes in lipid A-core structure or downregulation of the O7 LPS promoter. However, an abnormal accumulation of radiolabelled mannose was detected in the plasma membrane. As mannose is a sugar unique to the O7 subunit, this result suggested the presence of accumulated O7 LPS biosynthesis intermediates. Attempts to construct a tolA mutant in the E. coli O7 wild-type strain VW187 were unsuccessful, suggesting that this mutation is lethal. In contrast, a polar tolQ mutation affecting tolA expression in VW187 caused slow growth rate and serum sensitivity in addition to reduced O7 LPS production. VW187 tolQ cells showed an elongated morphology and became permeable to the membrane-impermeable dye propidium iodide. All these phenotypes were corrected upon complementation with cloned tol genes but were not restored by complementation with the tolQRA operon containing the frameshift mutation in tolA. Our results demonstrate that the TolA protein plays a critical role in the surface expression of O antigen subunits by an as yet uncharacterized involvement in the processing of O antigen.  相似文献   

15.
The nucleotide sequence of a 3.6-kb HindIII-SmaI DNA fragment of Xanthomonas campestris pv. campestris revealed four open reading frames which, based on sequence homologies, were designated tonB, exbB, exbD1, and exbD2. Analysis of translational fusions to alkaline phosphatase and beta-galactosidase confirmed that the TonB, ExbB, ExbD1, and ExbD2 proteins are anchored in the cytoplasmic membrane. The TonB protein of X. campestris pv. campestris lacks the conserved (Glu-Pro)n and (Lys-Pro)m repeats but harbors a 13-fold repeat of proline residues. By mutational analysis, the tonB, exbB, and exbD1 genes were shown to be essential for ferric iron import in X. campestris pv. campestris. In contrast, the exbD2 gene is not involved in the uptake of ferric iron.  相似文献   

16.
The TonB protein plays a key role in the energy-coupled transport of iron siderophores, of vitamin B12, and of colicins of the B-group across the outer membrane of Escherichia coli. In order to obtain more data about which of its particular amino acid sequences are necessary for TonB function, we have cloned and sequenced the tonB gene of Serratia marcescens. The nucleotide sequence predicts an amino acid sequence of 247 residues (Mr 27,389), which is unusually proline-rich and contains the tandem sequences (Glu-Pro)5 and (Lys-Pro)5. In contrast to the TonB proteins of E. coli and Salmonella typhimurium, translation of the S. marcescens TonB protein starts at the first methionine residue of the open reading frame, which is the only amino acid removed during TonB maturation and export. Only the N-terminal sequence is hydrophobic, suggesting its involvement in anchoring the TonB protein to the cytoplasmic membrane. The S. marcescens tonB gene complemented an E. coli tonB mutant with regard to uptake of iron siderophores, and sensitivity to phages T1 and phi 80, and to colicins B and M. However, an E. coli tonB mutant transformed with the S. marcescens tonB gene remained resistant to colicins Ia and Ib, to colicin B derivatives carrying the amino acid replacements Val/Ala and Val/Gly at position 20 in the TonB box, and they exhibited a tenfold lower activity with colicin D. In addition, the S. marcescens TonB protein did not restore T1 sensitivity of an E. coli exbB tolQ double mutant, as has been found for the overexpressed E. coli TonB protein, indicating a lower activity of the S. marcescens TonB protein. Although the S. marcescens TonB protein was less prone to proteolytic degradation, it was stabilized in E. coli by the ExbBD proteins. In E. coli, TonB activity of S. marcescens depended either on the ExbBD or the TolQR activities.  相似文献   

17.
CTXphi is a lysogenic filamentous bacteriophage that encodes cholera toxin. Filamentous phages that infect Escherichia coli require both a pilus and the products of tolQRA in order to enter host cells. We have previously shown that toxin-coregulated pilus (TCP), a type IV pilus that is an essential Vibrio cholerae intestinal colonization factor, serves as a receptor for CTXphi. To test whether CTXphi also depends upon tol gene products to infect V. cholerae, we identified and inactivated the V. cholerae tolQRAB orthologues. The predicted amino acid sequences of V. cholerae TolQ, TolR, TolA, and TolB showed significant similarity to the corresponding E. coli sequences. V. cholerae strains with insertion mutations in tolQ, tolR, or tolA were reduced in their efficiency of CTXphi uptake by 4 orders of magnitude, whereas a strain with an insertion mutation in tolB showed no reduction in CTXphi entry. We could detect CTXphi infection of TCP(-) V. cholerae, albeit at very low frequencies. However, strains with mutations in both tcpA and either tolQ, tolR, or tolA were completely resistant to CTXphi infection. Thus, CTXphi, like the E. coli filamentous phages, uses both a pilus and TolQRA to enter its host. This suggests that the pathway for filamentous phage entry into cells is conserved between host bacterial species.  相似文献   

18.
We investigated the role of the tolQ gene in the import of cloacin DF13 across the outer membrane of Escherichia coli strains expressing the IutA receptor. The IutA outer-membrane protein is the receptor for the siderophore ferric aerobactin and also binds cloacin DF13, a bacteriocin produced by strains of Enterobacter aerogenes. In this report we present evidence that tolQ is required for the internalization of cloacin DF13 upon binding to IutA but it is not involved in the transport of ferric aerobactin.  相似文献   

19.
20.
The Tol-Pal system of Escherichia coli is involved in maintaining outer membrane stability. Mutations in tolQ, tolR, tolA, tolB, or pal genes result in sensitivity to bile salts and the leakage of periplasmic proteins. Moreover, some of the tol genes are necessary for the entry of group A colicins and the DNA of filamentous bacteriophages. TolQ, TolR, and TolA are located in the cytoplasmic membrane where they interact with each other via their transmembrane domains. TolB and Pal form a periplasmic complex near the outer membrane. We used suppressor genetics to identify the regions important for the interaction between TolB and Pal. Intragenic suppressor mutations were characterized in a domain of Pal that was shown to be involved in interactions with TolB and peptidoglycan. Extragenic suppressor mutations were located in tolB gene. The C-terminal region of TolB predicted to adopt a beta-propeller structure was shown to be responsible for the interaction of the protein with Pal. Unexpectedly, none of the suppressor mutations was able to restore a correct association between Pal and peptidoglycan, suggesting that interactions between Pal and other components such as TolB may also be important for outer membrane stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号