首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximal micellar solubility, distribution and apparent monomer activity of cholesterol in taurine-conjugated cholate and chenodeoxycholate micellar solutions were studied to clarify the different modulating effect of these bile salt species on cholesterol uptake in an intestinal lumen. The maximal micellar solubility was significantly greater in taurochenodeoxycholate. The intermicellar cholesterol monomer concentration was not significantly different between the two kinds of micellar solution. However, the apparent cholesterol monomer activity determined using an artificial organic phase (polyethylene disc) was significantly higher in taurocholate than that in taurochenodeoxycholate. A linear relationship between the intermicellar cholesterol concentration and the apparent cholesterol monomer activity was found, with the slope depending upon the bile salt species. It is concluded that the difference in partitioning of cholesterol from taurocholate and taurochenodeoxycholate micelles into a fixed organic phase may contribute in part to the different regulating effects of these bile salts on the uptake of cholesterol in the intraluminal phase.  相似文献   

2.
Biliary micellar cholesterol nucleates via the vesicular pathway   总被引:1,自引:0,他引:1  
Biliary cholesterol nucleates primarily from phospholipid vesicles. In this study, we investigated the mode of nucleation of micellar cholesterol. Ten biles (four human and six model) were examined. The vesicular and micellar fractions of each bile were separated by gel chromatography. The whole biles and their isolated carriers were incubated at 37 degrees C until nucleation time. In whole human biles, the proportion of total cholesterol in vesicles rose throughout the incubation (from zero time to nucleation time) from 15.5 +/- 8.6% to 28.0 +/- 12.5%, and in model biles from 46.8 +/- 22.4% to 75.5 +/- 8.2%. The vesicular isolated fraction remained unchanged throughout incubation. In isolated micelles devoid of vesicles at zero time, new vesicles formed during incubation, carrying increasing proportions of cholesterol. At nucleation time, these vesicles contained 11.0% of originally micellar cholesterol in human biles, and 41.2% in model biles. The new vesicles formed in whole bile and in the micellar fraction were chromatographically and chemically similar to the vesicles originally present in bile. These data suggest that micellar cholesterol nucleates via the neoformation of phospholipid vesicles, which seem to be the final common pathway for cholesterol nucleation in bile.  相似文献   

3.
Lymphatic recovery of cholesterol infused into the duodenum as bile salt micelles containing phosphatidylcholine (PC) was accelerated by the co-administration of phospholipase A2 in bile and pancreatic juice diverted rats. Previously we observed that cholesterol esterase, which has the ability to hydrolyze PC, caused the same effect under a similar experimental condition (Ikeda et al., Biochim. Biophys. Acta, 1571, 34-44 (2002)). Accelerated cholesterol absorption was also observed when a part of micellar PC was replaced by lysophosphatidylcholine (LysoPC) and oleic acid. Phospholipase A2 facilitated the incorporation of micellar cholesterol into Caco-2 cells in a dose-dependent manner. There was a highly negative correlation between the incorporation of cholesterol into Caco-2 cells and the content of micellar PC remaining in the culture medium. The release of cholesterol as a monomer from bile salt micelles was enhanced when a part of micellar PC was replaced with LysoPC and oleic acid. These results strongly suggest that the release of monomer cholesterol from bile salt micelles is accelerated by hydrolysis of PC in bile salt micelles and hence that cholesterol absorption is enhanced.  相似文献   

4.
Despite the fact that a considerable amount of albumin is present in bile, little is known about the effect of albumin on micellar solubility of cholesterol. The effect of albumin on solubility of cholesterol in various micellar bile salt solutions was studied using Millipore filtration after equilibration. In addition, partitioning of cholesterol from micellar solution was studied using a polyethylene disc method. Decrease of the solubility of cholesterol by the presence of albumin was observed only in unconjugated bile salt solution. The lowering effect of albumin on the cholesterol solubility was found to be proportional to the hydrophobicity of bile salt. In contrast, albumin had almost no effect on cholesterol solubility, either in conjugated bile salt solution or in micellar bile salt solution containing phosphatidylcholine. Addition of albumin enhanced the partitioning of cholesterol out of the micelles in sodium chenodeoxycholate solution as a result of decreased micellar solubility and increased the aqueous solubility of cholesterol in the presence of albumin. Therefore, conjugated bile salt and phosphatidylcholine exert a buffering action on the albumin-induced adverse effect on cholesterol solubility, thus stabilising bile against inadvertent precipitation of cholesterol.  相似文献   

5.
Both phosphatidylcholine (PC) and sphingomyelin (SM) are the major phospholipids in the outer leaflet of the hepatocyte canalicular membrane. Yet, the phospholipids secreted into bile consist principally (>95%) of PC. In order to understand the physical;-chemical basis for preferential biliary PC secretion, we compared interactions with bile salts (taurocholate) and cholesterol of egg yolk (EY)SM (mainly 16:0 acyl chains, similar to trace SM in bile), buttermilk (BM)SM (mainly saturated long (>20 C-atoms) acyl chains, similar to canalicular membrane SM) and egg yolk (EY)PC (mainly unsaturated acyl chains at sn-2 position, similar to bile PC). Main gel to liquid-crystalline transition temperatures were 33. 6 degrees C for BMSM and 36.6 degrees C for EYSM. There were no significant effects of varying phospholipid species on micellar sizes or intermixed-micellar/vesicular bile salt concentrations in taurocholate-phospholipid mixtures (3 g/dL, 37 degrees C, PL/BS + PL = 0.2 or 0.4). Various phases were separated from model systems containing both EYPC and (EY or BM)SM, taurocholate, and variable amounts of cholesterol, by ultracentrifugation with ultrafiltration and dialysis of the supernatant. At increasing cholesterol content, there was preferential distribution of lipids and enrichment with SM containing long saturated acyl chains in the detergent-insoluble pelletable fraction consisting of aggregated vesicles. In contrast, both micelles and small unilamellar vesicles in the supernatant were progressively enriched in PC. Although SM containing vesicles without cholesterol were very sensitive to micellar solubilization upon taurocholate addition, incorporation of the sterol rendered SM-containing vesicles highly resistant against the detergent effects of the bile salt. These findings may have important implications for canalicular bile formation.  相似文献   

6.
The purpose of the present study was to evaluate the possible interaction of bile salt monomer and cholesterol in the intermicellar aqueous phase. Cholesterol and taurocholate monomer concentrations in the intermicellar aqueous phase were determined using 0-20 mM taurocholate solutions saturated with cholesterol. Maximal solubilities of cholesterol in aqueous solutions having various concentrations of taurocholate, especially below its intermicellar monomer concentration (critical micellar concentration), were determined and compared with the intermicellar cholesterol concentration. The intermicellar monomer concentration of taurocholate was constant (6 mM) and independent of taurocholate concentrations. The cholesterol concentration in the intermicellar aqueous phase gradually increased, depending upon taurocholate concentrations, and became constant (1,3 microM) above 10 mM taurocholate. The solubility of cholesterol increased linearly with the taurocholate concentration even below the critical micellar concentration, and was 0.3 microM at 6 mM taurocholate, which was approx. 20-times higher than the aqueous solubility of cholesterol, but a fifth of the maximal intermicellar cholesterol concentration. The results indicate that the higher cholesterol concentration in the intermicellar aqueous phase compared to its aqueous solubility can be primarily ascribed to the interaction of cholesterol with bile salt monomers possibly forming bile salt-cholesterol dimers, and partly to the sustaining forces induced by numerous micelles.  相似文献   

7.
Biliary cholesterol/phospholipid vesicles play an important role in the pathogenesis of gallstone disease. A prerequisite for the study of the lipid composition and stability of these vesicles is a reliable method to quantify the amount of vesicular lipid. In the present report we show that NMR can be used to determine the distribution of biliary lecithin between the micellar and vesicular phases. The relatively large size of the vesicles leads to such a broadening of the lipid resonances that they are no longer visible in high resolution 1H-NMR spectra. Since micelles are much smaller, lipid present in the micellar phase does give rise to sharp peaks in 1H-NMR spectra. Micellar lecithin can easily be quantified in these spectra. The resonances of cholesterol are masked by the closely related bile acid that is present in a much higher concentration. By determining the difference between chemically and NMR estimated lecithin, the distribution of this phospholipid between the micellar phase and vesicular phase can be assessed. We have compared the results of NMR with gel permeation and density gradient ultracentrifugation. Using standard fractionation conditions, both gel permeation and density gradient ultracentrifugation lead to an underestimation of vesicular lecithin, the difference being minor at relatively high total lipid concentrations (10 g/dl) but large in diluted model bile. We conclude that 1H-NMR can be used to determine the distribution of lecithin in model bile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

9.
Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human bile was mixed with model bile and the effect on the distribution of cholesterol and phospholipid between mixed micelles and phospholipid/cholesterol vesicles was studied by means of density gradient ultracentrifugation. The nucleation-promoting activity containing fraction induced a transfer of cholesterol and phospholipid from the micellar to the vesicular phase. This led to a decrease in the density of the vesicular fraction. We have also studied the effect of promoting activity on the nucleation time of an isolated vesicle fraction. A decrease of the nucleation time of 10.7 +/- 1.3 to 2.3 +/- 0.3 days was observed. In conclusion, a concanavalin A binding protein fraction from human bile stimulated cholesterol nucleation via a double effect; it increased the amount of vesicular cholesterol and phospholipid, and it also directly induced nucleation of cholesterol from the vesicles.  相似文献   

10.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.  相似文献   

11.
We compared the protein/lipid structure and Ch-nucleating capacity of individual lipid carriers in two groups of human gallbladder biles: 11 with Fast cholesterol nucleation (2.2 +/- 1.3 days) and 10 with Slow cholesterol nucleation (19.2 +/- 4.4 days). The groups had comparable cholesterol-saturation (1.31 vs. 1.28), total lipids (9.9 vs. 8.5 g/dl) and proteins (8.5 vs. 7.6 mg/ml). Bile was ultracentrifuged (2 h at 150,000 x g) and the resulting isotropic phase was incubated with [3H]Ch and [14C]lecithin and gel-chromatographed on a Superose 6 column with a buffer containing 7.0 mM sodium-taurocholate. Seven protein peaks were identified (280 nm and biochemistry), with the following molecular mass ranges (kDa): 1 (Void volume), 2 (155-205), 3 (50-79), 4 (20-29), 5 (6-15), 6 (3.5-6), 7 (2-3.5). Peaks 2 and 3 were identified as vesicles and micelles, respectively. Fast vs. Slow Ch nucleating biles had: (a) more (P less than 0.02) cholesterol coeluting with vesicles, (b) more (P less than 0.01) lecithin coeluting with low m.w. peaks (Nos. 5-6), (c) less (P less than 0.01) cholesterol and lecithin coeluting with micelles. An inverse correlation (P less than 0.001) was observed between the amount of proteins coeluting with the micellar peak and the cholesterol nucleation of both whole bile and isolated micellar fractions. A marked shift of cholesterol and lecithin from micelles to vesicles was apparent, in the whole bile, after cholesterol nucleation had occurred. Incubation and sequential analysis of isolated and radiolabeled micelles showed a progressive transfer of lecithin and cholesterol molecules to low molecular weight fractions and to vesicles before cholesterol nucleation. We conclude that pro-nucleating biliary vesicles develop from micelles, due to the phasing out and redistribution of micellar cholesterol and lecithin, which are probably induced by biliary proteins.  相似文献   

12.
Eggs are a popular source of dietary cholesterol, but their consumption does not necessarily result in an increased serum cholesterol concentration. We investigated the cholesterol-lowering activity of egg white protein (EWP) and its potential mechanism in rats. The consumption of EWP resulted in a decreased concentration of cholesterol in the serum, liver and intestinal mucosa. The excretion of fecal neutral sterols and bile acids was greater by rats fed with EWP than by those fed with casein. The ratio of cholesterol and bile acids in the micellar phase to those in the solid phase was lower in the intestinal contents from rats fed with EWP than from those fed with casein. These results suggest that the cholesterol-lowering activity of EWP can be attributed to lowering the cholesterol absorption by intervening in the micellar formation in the intestines.  相似文献   

13.
Physical-chemical properties of the major sulfated monohydroxy bile salts of man are described. In general, the sulfates are significantly more water-soluble than the non-sulfated species as a result of lower critical micellar temperatures, high aqueous monomeric solubilities and critical micellar concentrations. Nevertheless, at 37 degrees C the disodium salt of glycolithocholate sulfate, the major monohydroxy bile salt of man is not more soluble than its non-sulfated form. Since aqueous solubility correlates inversely with the cholestatic potential of bile salts, our results suggest that this sulfate may be potentially hepatoxic. Micellar solubility of phosphatidylcholine and cholesterol by the majority of non-sulfated and sulfated monohydroxy bile salts is slight. Nonetheless, phosphatidylcholine is very well solubilized by taurolithocholate sulfate but cholesterol solubility is not increased appreciably. Cholesterol saturation in model bile systems of taurochenodeoxycholate and phosphatidylcholine is impaired by the addition of sulfated lithocholate conjugates but with physiological bile salt compositions this reduction is not significant.  相似文献   

14.
We examined, by reverse-phase high performance liquid chromatography (HPLC), the hydrophilic-hydrophobic balance of cholesterol and 12 non-cholesterol sterols and related this property to their equilibrium micellar solubilities in sodium taurocholate and sodium glycodeoxycholate solutions. Sterols investigated exhibited structural variations in the polar function (3 alpha-OH, 3 beta-OH, 3 beta-SH), nuclear double bonds (none, delta 5, or delta 7), side chain length (C27, C28, C29) and side chain double bonds (none, delta 22, or delta 24). In general, a sterol's hydrophilic-hydrophobic balance became progressively more hydrophobic (as exemplified by increasing HPLC retention values, k') with additions of side chain methyl (C28) and ethyl (C29) groups and with 3 beta-SH substitution of the 3-OH polar function. Side chain delta 22 and especially delta 24 double bonds rendered the sterols appreciably more hydrophilic, whereas a single nuclear double bond had little influence. Sterol solubilities (24 degrees C, 0.15 M Na+) were uniformly greater in 50 mM solutions of sodium glycodeoxycholate (range 0.15 to 2.5 mM) than in equimolar solutions of the more hydrophilic bile salt, sodium taurocholate (range 0.07 to 0.67 mM). For each bile salt system, a strong inverse correlation existed between micellar solubilities of sterols and their HPLC k' values, indicating that more hydrophilic sterols had greater micellar solubilities than the more hydrophobic ones. Based upon the aqueous monomeric solubilities of cholesterol (C27) and beta-sitosterol (C29) at 24 degrees C, we derived free energy changes associated with micellar binding and found that solubilization of both sterols was more energetically favored in glycodeoxycholate solutions. Although cholesterol exhibited a higher binding affinity than beta-sitosterol in glycodeoxycholate micelles, solubilization of beta-sitosterol in taurocholate micelles was more energetically favored than cholesterol by -0.6 kcal/mol. Based upon these results we offer a thermodynamic explanation for the greater micellar solubilities of more hydrophilic sterols and suggest that the high affinity, but low capacity, of a typical phytosterol for binding to trihydroxy bile salt micelles may provide a physical-chemical basis for its inhibition of intestinal cholesterol absorption.  相似文献   

15.
The intermicellar aqueous phase in equilibrium with micelle plays an important role in the uptake of sterol. To test the hypothesis whether cholesterol concentration in the intermicellar aqueous phase of a micellar solution is similar to its maximal aqueous solubility, cholesterol concentration in the intermicellar aqueous phase of a bile salt-cholesterol solution and maximal aqueous cholesterol solubility were quantitatively determined by capillary gas-liquid chromatography after filtration. Cholesterol concentration in the intermicellar aqueous phase increased linearly with cholesterol concentration in the micellar solution and reached 1.3 microM at its micellar solubility limit, while the maximal aqueous solubility of cholesterol was (1.2-1.4) x 10(-8) M. The intermicellar monomer concentration of taurocholate was 5.8 mM in which 26 x 10(-8) M cholesterol was solubilized. The results indicate the presence of a cholesterol concentration in the intermicellar aqueous phase that is significantly higher than its maximal aqueous solubility, which can be ascribed primarily to the presence of an intermicellar concentration of bile salt.  相似文献   

16.
A previously validated in vitro technique was used to determine the effect of diabetes mellitus on the intestinal uptake of cholesterol from various micellar bile salt solutions. The bile salts studied included cholic (C), taurocholic (TC), glycocolic (GC), chenodeoxycholic (CDC), taurochenodeoxycholic (TCDC), glycochenodeoxycholic (GCDC), deoxycholic (DC), taurodeoxycholic (TDC), and glycodeoxycholic (GDC). In control rats there was a reciprocal decline in cholesterol uptake with increasing concentrations of these nine bile acids, and cholesterol uptake was greater from the conjugated primary bile acids than from the unconjugated ones. With a 5 mM concentration of bile acids, the ratios of the uptake of 0.2 mM cholesterol in control rats were C = CDC = DC, TCDC greater than TC greater than TDC, and GC = GCDC greater than GDC; with 20 mM concentrations, the ratios of cholesterol uptake in control rats were C greater than CDC greater than DC, TC greater than TCDC greater than TDC, and GC = GCDC greater than GDC. In the diabetic animals cholesterol uptake was higher than in control rats when using 5 or 20 mM of each of the conjugated bile acids and with cholic acid. In contrast, cholesterol uptake was similar in diabetic and control animals when cholesterol was solubilized with 5 or 20 mM CDC or DC. These differences in cholesterol uptake using the various bile acids and the failure of CDC and DC to facilitate the enhanced uptake of cholesterol in diabetic animals remains unexplained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mixed bile salt micelle solubilized either cholesterol or beta-sitosterol to a comparable extent. When added simultaneously, beta-sitosterol restricted the micellar solubility of cholesterol. beta-Sitosterol also reduced the cholesterol content in the aqueous (micellar) phase of the intestinal contents of rats, the extent of reduction being comparable with that observed in vitro. The intestinal uptake of cholesterol in vivo was equivalent to the micellar incorporation of cholesterol both in vitro and in vivo. beta-Sitosterol had no inhibitory effect on cholesterol absorption from the micellar solution in jejunal loops in situ, whereas the rate of beta-sitosterol uptake was only about one-fifth that of cholesterol. The intestinal uptake of beta-sitosterol intubated into the stomach of rats was about one-fifth that of cholesterol. The intestinal brush-border membrane discriminated these sterols. These results suggest that the restriction of the micellar solubility of cholesterol, rather than the inhibition of uptake from brush-border membrane, is the major determinant for the interference of beta-sitosterol with cholesterol absorption.  相似文献   

18.
Using compressed discs and microcrystals of cholesterol monohydrate, we evaluated the mechanisms and kinetics of dissolution in conjugated bile salt-lecithin solutions. In stirred conjugated ursodeoxycholate-lecithin and cheno-deoxycholate-lecithin solutions, dissolution of 10,000-psi discs was micellar and linear with time for 10 hours. The dissolution rate constants (k) decreased in proportion to the lecithin content and dissolution rates and k values were appreciably smaller in conjugated ursodeoxycholate-lecithin solutions. After dissolution for 5 to 10 days the discs incubated with ursodeoxycholate-lecithin systems became progressively transformed into macroscopic liquid crystals. Unstirred dissolution of 3,000-psi discs in "simulated" human bile containing physiological lecithin concentrations gave apparent k values that decreased in the following order: ursodeoxycholate-rich >/= chenodeoxycholate-rich > normal. In most cases the discs incubated with ursodeoxycholate-rich bile became covered with a microscopic liquid-crystalline layer. With 20-25 moles % lecithin, these layers eventually dispersed into the bulk solution as microscopic vesicles. During dissolution of microcrystalline cholesterol in conjugated ursodeoxycholate-lecithin systems, a bulk liquid-crystalline phase formed rapidly (within 12 hours) and the final cholesterol solubilities were greater than those in conjugated chenodeoxycholate-lecithin micellar systems. Prolonged incubation of cholesterol microcrystals with pure lecithin or lecithin plus bile salt liposomes did not reproduce these effects. Condensed ternary phase diagrams of conjugated ursodeoxycholate-lecithin-cholesterol systems established that cholesterol-rich liquid crystals constituted an equilibrium precipitate phase that coexisted with cholesterol monohydrate crystals and saturated micelles under physiological conditions. Similar phase dissolution-relationships were observed at physiological lecithin-bile salt ratios for a number of other hydrophilic bile salts (e.g., conjugated ursocholate, hyocholate, and hyodeoxycholate). In contrast, liquid crystals were not observed in conjugated chenodeoxycholate-lecithin-cholesterol systems except at high (nonphysiological) lecithin contents. Based on these and other results we present a molecular hypothesis for cholesterol monohydrate dissolution by any bile salt-lecithin system and postulate that enrichment of bile with highly hydrophilic bile salts will induce crystalline cholesterol dissolution by a combination of micellar and liquid crystalline mechanisms. Since bile salt polarity can be measured and on this basis the ternary phase diagram deduced, we believe that the molecular mechanisms of cholesterol monohydrate dissolution as well as the in vivo cholelitholytic potential of uncommon bile salts can be predicted.-Salvioli, G., H. Igimi, and M. C. Carey. Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms.  相似文献   

19.
This paper reports the chemical synthesis of two new bile acid analogues, namely, 3 alpha, 6 beta-dihydroxy-6 alpha-methyl-5 beta-cholanoic acid from 3 alpha-hydroxy-6-oxo-5 beta-cholanoic acid and describes their metabolism in the hamster. A Grignard reaction of the oxo acid with methyl magnesium iodide in tetrahydrofuran gave two epimeric dihydroxy-6-methyl-cholanoic acids which were separated as the methyl esters by silica gel column chromatography. The configuration of the 6-methyl groups was assigned by proton nuclear magnetic resonance spectroscopy and was supported by the chromatographic properties of the new compounds. The metabolism of the two new bile acid analogues was studied in the hamster. After intraduodenal administration of the 14C-labeled analogues into bile fistula hamsters, both compounds were absorbed rapidly from the intestine and secreted into bile. Intravenous infusion studies revealed that these compounds were efficiently extracted by the liver; the administered analogues became major biliary bile acids, present as either the glycine or taurine conjugates. These compounds are useful to study the effect of methyl-substituted bile acids on cholesterol and bile acid metabolism and may possibly possess cholelitholytic properties.  相似文献   

20.
(1) Mixed bile salt micelle solubilized either cholesterol or β-sitosterol to a comparable extent. When added simultaneously, β-sitosterol restricted the micellar solubility of cholesterol. (2) β-Sitosterol also reduced the cholesterol content in the aqueous (micellar) phase of the intestinal contents of rats, the extent of reduction being comparable with that observed in vitro. The intestinal uptake of cholesterol in vivo was equivalent to the micellar incorporation of cholesterol both in vitro and in vivo. (3) β-Sitosterol had no inhibitory effect on cholesterol absorption from the micellar solution in jejunal loops in situ, whereas the rate of β-sitosterol uptake was only about one-fifth that of cholesterol. (4) The intestinal uptake of β-sitosterol intubated into the stomach of rats was about one-fifth that of cholesterol. The intestinal brush-border membrane discriminated these sterols. These results suggest that the restriction of the micellar solubility of cholesterol, rather than the inhibition of uptake from brush-border membrane, is the major determinant for the interference of β-sitosterol with cholesterol absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号