首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
2.
Malignant transformation of cells is frequently associated with abnormalities in human leukocyte antigen (HLA) expression. MHC class I loss or down-regulation in cancer cells is a major immune escape route used by a large variety of human tumours to evade antitumour immune responses mediated by cytotoxic T lymphocytes. The goal of our study was to explore HLA genotyping and phenotyping in a variety of melanoma tumour cell lines. A total of 91 melanoma cell lines were characterised for HLA class I and II genotype. In addition, 61 out of the 91 cell lines were also analysed for HLA class I and II cell surface molecule expression by flow cytometry. Unexpectedly, we found that 19.7% of the melanoma cell lines were homozygous for HLA class I genotypes, sometimes associated with HLA class II homozygosity (8.79%) and sometimes not (10.98%). The frequency of homozygosity was significantly higher compared with the control groups (1.6%). To identify the reasons underlying the high frequency of HLA homozygosity we searched for genomic deletions using eight pairs of highly polymorphic microsatellite markers covering the entire extended HLA complex on the short arm of chromosome 6. Our results were compatible with hemizygous deletions and suggest that loss of heterozygosity on chromosome arm 6p is a common feature in melanoma cell lines. In fact, although autologous normal DNA from the patients was not available and could not be tested, the retention in some cases of heterozygosity for a number of microsatellite markers would indicate a hemizygous deletion. In the rest of the cases, markers at 6p and 6q showed a single allele pattern indicating the probable loss of part or the whole of chromosome 6. These results led us to conclude that loss of heterozygosity in chromosome 6 is nonrandom and is possibly an immunologically relevant event in human malignant melanoma. Other well-established altered HLA class I phenotypes were also detected by flow cytometry that correspond to HLA class I total loss and HLA-ABC and/or specific HLA-B locus down-regulation.  相似文献   

3.
Defects in HLA class I antigen processing machinery (APM) component expression often have a negative impact on the clinical course of tumors and on the response to T cell-based immunotherapy. Since only scant information is available about the frequency and clinical significance of HLA class I APM component abnormalities in prostate cancer, the APM component expression pattern was analyzed in 59 primary prostate carcinoma, adjacent normal tissues, as well as in prostate carcinoma cell lines. The IFN-γ inducible proteasome subunits LMP2 and LMP7, TAP1, TAP2, calnexin, calreticulin, ERp57, and tapasin are strongly expressed in the cytoplasm of normal prostate cells, whereas HLA class I heavy chain (HC) and β2-microglobulin are expressed on the cell surface. Most of the APM components were downregulated in a substantial number of prostate cancers. With the exception of HLA class I HC, TAP2 and ERp57 not detectable in about 0.5% of tumor lesions, all other APM components were not detected in at least 21% of lesions analyzed. These APM component defects were associated with a higher Gleason grade of tumors and an early disease recurrence. Prostate carcinoma cell lines also exhibit a heterogeneous, but reduced constitutive APM component expression pattern associated with lack or reduced HLA class I surface antigens, which could be upregulated by IFN-γ. Our results suggest that HLA class I APM component abnormalities are mainly due to regulatory mechanisms, play a role in the clinical course of prostate cancer and on the outcome of T cell-based immunotherapies.  相似文献   

4.
5.
Analysis of HLA-E expression in human tumors   总被引:9,自引:1,他引:8  
  相似文献   

6.
Major histocompatibility complex (MHC) class I loss or downregulation in cancer cells is a major immune escape route used by a large variety of human tumors to evade anti-tumor immune responses mediated by cytotoxic T lymphocytes. Multiple mechanisms are responsible for such HLA class I alterations. However, the precise frequency of these molecular defects has not been clearly determined in tumors derived from specific tissues. To analyze such defects we aim to define the major HLA class I-altered phenotypes in different tumor types. In this paper we report on HLA class I expression in 70 laryngeal carcinomas. We used immunohistological techniques with a highly selective panel of anti-HLA monoclonal antibodies (mAb), and polymerase chain reaction (PCR) microsatellite amplification of previously selected microsatellite markers (STR) located in chromosome 6 and 15. DNA was obtained from microdissected tumor tissues and surrounding stroma to define the loss of heterozygosity (LOH) associated with chromosome 6p21. Our results showed that LOH in chromosome 6 produced HLA haplotype loss (phenotype II) in 36% of the tumors. In addition, HLA class I total loss (phenotype I) was found in 11%; HLA A or B locus downregulation (phenotype III) was detected in 20%; and HLA class I allelic loss (phenotype IV) in 10% of all cases. We sometimes observed two or more associated mechanisms in the same HLA-altered phenotype, such as LOH and HLA total loss in phenotype I. In only 23% of tumors it was not possible to identify any HLA class I alteration. We conclude that the combination of immunohistological techniques and molecular analysis of tumor DNA obtained from microdissected tumor tissues provides a means for the first time of determining the actual frequency of the major HLA class I-altered phenotypes in laryngeal carcinomas.  相似文献   

7.
HLA class I loss or down-regulation is a widespread mechanism used by tumor cells to avoid tumor recognition by cytotoxic T lymphocytes, and thus favor tumor immune escape. Multiple mechanisms are responsible for these HLA class I alterations. In different epithelial tumors, loss of heterozygosity (LOH) at chromosome region 6p21.3, leading to HLA haplotype loss, occurs in 6–50% of all cases depending on the tumor entity. In this paper we report the frequency of LOH at 6p21 in 95 colorectal carcinomas (CRC) previously analyzed for altered HLA class I expression with immunohistological techniques. We used PCR microsatellite amplification of selected STR markers located on Chromosome 6 to identify LOH with DNA from microdissected tumor tissues and the surrounding stroma. Sequence-specific oligonucleotide analysis was performed in microdissected stroma and tumor cells for HLA typing, and to detect HLA haplotype loss. A high frequency (40%) of HLA haplotype loss was found in CRC. Eight tumors showed microsatellite instability. We sometimes observed two or more mechanisms responsible for HLA alteration within the same HLA-altered phenotype, such as LOH and HLA class I total loss. In 25 tumors (26%) no HLA class I alteration could be identified. These data are potentially relevant for CRC patients undergoing T-cell-based immunotherapy.  相似文献   

8.
Scanty information is available about the mechanisms underlying HLA class I Ag abnormalities in malignant cells exposed to strong T cell-mediated selective pressure. In this study, we have characterized the molecular defects underlying HLA class I Ag loss in five melanoma cell lines derived from recurrent metastases following initial clinical responses to T cell-based immunotherapy. Point mutations in the translation initiation codon (ATG-->ATA) and in codon 31 (TCA-->TGA) of the beta(2)-microglobulin (beta(2)m) gene were identified in the melanoma cell lines 1074MEL and 1174MEL, respectively. A hot-spot CT dinucleotide deletion within codon 13-15 was found in the melanoma cell lines 1106MEL, 1180MEL, and 1259MEL. Reconstitution of beta(2)m expression restored HLA class I Ag expression in the five melanoma cell lines; however, the HLA-A and HLA-B,-C gene products were differentially expressed by 1074MEL, 1106MEL, and 1259MEL cells. In addition, in 1259MEL cells, the Ag-processing machinery components calnexin, calreticulin, and low m.w. polypeptide 10 are down-regulated, and HLA-A2 Ags are selectively lost because of a single cytosine deletion in the HLA-A2 gene exon 4. Our results in conjunction with those in the literature suggest the emergence of a preferential beta(2)m gene mutation in melanoma cells following strong T cell-mediated immune selection. Furthermore, the presence of multiple HLA class I Ag defects within a tumor cell population may reflect the accumulation of multiple escape mechanisms developed by melanoma cells to avoid distinct sequential T cell-mediated selective events.  相似文献   

9.
Purpose: Most melanoma cell lines express HLA class II antigens constitutively or can be induced to do so with interferon γ (IFNγ). We have previously demonstrated that peptide-specific CD4+ T cells proliferate in response to HLA-class-II-antigen-mediated peptide presentation by melanoma cells in vitro and produce interleukin-10 (IL-10) and (IFNγ). We asked whether the responding T cells kill the tumor cells and, if so, whether direct cell contact was required. Methods: Two HLA class II+ melanoma cell lines derived from metastases were co-cultured with a human CD4+ T cell clone specific for influenza hemagglutinin peptide (HA). T cells, melanoma, and HA were co-cultured for 48 h. Melanoma cells with and without HA and/or T cells served as controls. After 36 h, the medium was removed for cytokine analysis by enzyme-linked immunosorbent assay (ELISA). Twelve hours later non-adherent cells were washed away and the adherent melanoma cells were trypsinized and counted. Dual-chamber culture plates were used to determine whether cell contact and/or exposure to cytokine were required for tumor cell death. Results: Melanoma cell counts were over 80% lower in wells containing T cells than in wells with melanoma and peptide alone (P < 0.05). ELISA of supernatants revealed production of IFNγ and IL-10 by the responding T cells. Direct T cell contact with tumor cells was not required for tumor cell death, as melanoma cells were killed when they shared medium but had no contact with T cells responding to peptide presentation by HLA-class-II-antigen-positive melanoma cells in a separate chamber. Blocking antibody to IFNγ but not IL-10 prevented melanoma cell death at levels of cytokine similar to that present in co-culture assays. Conclusions: Peptide-specific CD4+ T cells kill melanoma cells in vitro when they recognize peptide presented by the tumor cell in the context of HLA class II antigen. Direct cell contact is not required, suggesting that it is a cytokine-mediated event. Immunotherapy, using primed CD4+ T cells and peptide, may be beneficial in patients whose tumors express HLA class II antigens or can be induced to do so with IFNγ. Received: 1 July 1999 / Accepted: 17 September 1999  相似文献   

10.
Enhancement of human melanoma antigen expression by IFN-beta   总被引:2,自引:0,他引:2  
Although many immunotherapeutic investigations have focused on improving the effector limb of the antitumor response, few studies have addressed preventing the loss of tumor-associated Ag (TAA) expression, associated with immune escape by tumors. We found that TAA loss from human melanomas usually results from reversible gene down-regulation, rather than gene deletion or mutation. Previously, we showed that inhibitors of MAPK-signaling pathways up-regulate TAA expression in melanoma cell lines. We have now identified IFN-beta as an additional stimulus to TAA expression, including Melan-A/MART-1, gp100, and MAGE-A1. IFN-beta (but neither IFN-alpha nor IFN-gamma) augmented both protein and mRNA expression of melanocytic TAA in 15 melanoma lines (irrespective of initial Ag-expression levels). Treatment of low Ag melanoma lines with IFN-beta increased expression of melanocyte-lineage Ags, inducing susceptibility to lysis by specific CTLs. Treatment with IFN-beta also enhances expression of class I HLA molecules, thereby inducing both nominal TAA and the presenting HLA molecule. Data from fluorescent cellular reporter systems demonstrated that IFN-beta triggers promoter activation, resulting in augmentation of Ag expression. In addition to enhancing TAA expression in melanomas, IFN-beta also stimulated expression of the melanocytic Ag gp100 in cells of other neural crest-derived tumor lines (gliomas) and certain unrelated tumors. Because IFN-beta is already approved for human clinical use in other contexts, it may prove useful as a cotreatment for augmenting tumor Ag expression during immunotherapy.  相似文献   

11.
12.
c-myc down-regulates class I HLA expression in human melanomas   总被引:19,自引:4,他引:15       下载免费PDF全文
Expression of class I HLA antigen has been shown to be reduced in a number of human tumours. Here we show that in a panel of 11 melanoma cell lines with variable class I HLA expression an inverse correlation exists between the mRNA levels of c-myc and class I HLA. This suggests that high expression of the c-myc oncogene might inhibit the class I HLA expression. To test this hypothesis a melanoma cell line with a low c-myc and high class I HLA mRNA expression was transfected with a c-myc expression vector. All clones expressing the transfected c-myc gene show reduced class I HLA mRNA and beta 2-microglobulin mRNA expression. Reduced class I HLA mRNA levels result in a lowered class I protein expression on the cell surface. Treatment with gamma-interferon fully restores the class I HLA and beta 2-microglobulin expression in these cells. This effect is preceded by a transient decrease of the c-myc mRNA level. These results show that the class I HLA expression is modulated by the level of c-myc expression, thus opening up the possibility that high expression of this oncogene influences the interaction of melanoma cells with the immune system.  相似文献   

13.
14.
Purpose: To characterize HLA class I antigen expression in non-small cell lung cancer (NSCLC) lesions, and to assess the clinical significance of these molecules’ downregulation. Methods: One hundred and ninety primary formalin fixed, paraffin embedded NSCLC lesions were stained with HLA class I heavy chain-specific mAb HC-10. Results were scored as percentage of stained tumor cells and categorized into three groups: 0–24% (negative), 25–75% (heterogeneous) and >75% (positive). HLA class I antigen expression was correlated with clinical and pathologic predictors of time to progression and survival and analyzed using the chi-square test. Association between HLA class I antigen expression and survival was assessed using Cox regression models, while controlling for confounders. Results: HLA class I antigen expression was negative, heterogeneous and positive in 153, 25 and 12 primary NSCLC lesions, respectively. Independent variables significantly associated with survival included tumor stage, PS and weight loss. The median survival times were 40.6, 44.0 and 17.9 months for patients with a HLA class I antigen expression scored as negative, heterogeneous and positive, respectively. Conclusion: HLA class I antigen defects were found with high frequency (93.6%) in NSCLC lesions. HLA class I antigen downregulation was associated with improved survival, although this association was not statistically significant. These results, which parallel similar findings in uveal melanoma and in breast carcinoma, raise the possibility that NK cells may play a role in the control of NSCLC tumors.N. Ramnath and D. Tan contributed equally to the paper  相似文献   

15.
The cytotoxic activity of T cells selects the outgrowth of tumor cells that escape from immune surveillance by different strategies. The different mechanisms that interfere with immune recognition and limit vaccination efficiency are still poorly understood. We analysed six cell lines established from different metastases of melanoma patient UKRV-Mel-20 for specific characteristics known to have an impact on the tumor-T cell interaction: (1) alterations in the HLA class I phenotype, (2) expression of Fas/CD95, and (3) expression of specific cytokines and chemokines. One of the cell lines, UKRV-Mel-20f, exhibited an HLA class I haplotype loss and just this cell line was also characterised by the expression of Fas/CD95 and of relatively high levels of proinflammatory chemokines suggesting that the cytotoxic activity of tumor-infiltrating T cells might have selected the outgrowth of this tumor cell variant. All other cell lines analysed showed no alterations in HLA class I expression, but, in contrast to UKRV-Mel-20f, expressed much lower levels of Fas/CD95 and of proinflammatory chemokines and some of them produced high levels of immunosuppressive TGF-beta1. These results suggest that in patient UKRV-Mel-20, tumor cells interfere with T cell recognition by different strategies which might partially explain why this patient did not have a clinical response to an autologous tumor cell vaccine.  相似文献   

16.

Background

Despite Natural Killer (NK) cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting.

Methodology/Principal Findings

We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved. Since self HLA class I molecules normally play a protective role from NK cell-mediated attack, we analyzed HLA class I expression on melanomas in comparison to autologous lymphocytes. We found that melanoma cells presented specific allelic losses in 50% of the patients analyzed. In addition, CD107a degranulation assays applied to NK cells expressing a single inhibitory receptor, revealed that, even when expressed, specific HLA class I molecules are present on melanoma cell surface in amount often insufficient to inhibit NK cell cytotoxicity. Remarkably, upon activation, also the so called “unlicensed” NK cells, i.e. NK cells not expressing inhibitory receptor specific for self HLA class I molecules, acquired the capability of efficiently killing autologous melanoma cells, thus additionally contributing to the lysis by a mechanism independent of HLA class I expression on melanoma cells.

Conclusions/Significance

We have investigated in details the mechanisms controlling the recognition and lysis of melanoma cells by autologous NK cells. In these autologous settings, we demonstrated an efficient in vitro killing upon NK cell activation by mechanisms that may be related or not to abnormalities of HLA class I expression on melanoma cells. These findings should be taken into account in the design of novel immunotherapy approaches against melanoma.  相似文献   

17.
Down-regulation of the expression of major histocompatibility complex molecules is a frequent event that is associated with the poor immunogenicity of tumor cells. Acquired resistence to T-cell-based immunotherapy has been associated with loss of functional β2-microglobulin expression. This anomaly appears to be particularly relevant in tumors exhibiting a defect in DNA-mismatch repair, and induces structural abnormalities in HLA cell-surface expression that are not reversible by cytokine treatment. We examined HLA expression in 118 melanoma, colon or larynx tumors to identify total loss of HLA class I expression with or without somatic β2-microglobulin gene mutation. Microsatellite instability was investigated in these tumors to determine whether a replication error phenotype (RER+) implied a particular alteration in HLA phenotype. A total of 7.6% of the tumors showed the RER+ phenotype, and 12.7% were HLA-ABC-negative. In the RER+ group, only one tumor was HLA-ABC-negative and no β2-microglobulin mutation was identified. In contrast, in the HLA-ABC-negative group, only one tumor showed microsatellite instability. None of the three melanomas that contained β2-microglobulin mutation exhibited the mutator phenotype. These findings suggest that β2-microglobulin mutation in human melanoma tumors may arise through a mechanism that does not necessarily involve microsatellite instability. Our results also indicate that somatic mutations of the β2-microglobulin gene are not the main mechanism of total loss of HLA expression. Received: 14 June 1999 / Accepted: 16 September 1999  相似文献   

18.
Two long-term tumor-infiltrating lymphocyte (TIL) lines and their autologous tumor lines have been established from solid tumors derived from different patients with metastatic melanoma. In 4-hr 51Cr release assays, each TIL culture lysed only the autologous cryopreserved fresh or established melanoma line, but failed to lyse other melanoma tumors or K562 cells. Repeated stimulation of TIL with the autologous melanoma lines resulted in significant increases in anti-tumor CTL activity with no apparent loss in specificity. Stimulated cells have retained cytotoxic activity for up to 5 months in culture. Tumor cell CTL activity for both long-term TIL lines is inhibited by several mAbs, including those against CD3, CD8, and class I MHC molecules, indicating that the effector cells are class I-restricted CD8+, CTL. Furthermore, recognition of Ag on one of the established melanoma lines by TIL is restricted by HLA A-2. The availability of autologous tumor lines may prove clinically useful for the selective stimulation and expansion of cells with anti-tumor activity within a heterogeneous TIL population.  相似文献   

19.
Alterations in HLA class I antigen expression have been frequently described in different epithelial tumors and are thought to favor tumor immune escape from T lymphocyte recognition. Multiple molecular mechanisms are responsible for these altered HLA class I tumor phenotypes. Some are structural defects that produce unresponsiveness to treatment with interferons. Others include alterations in regulatory mechanisms that can be switched on by treatment of tumor cells with different cytokines. One important mechanism belonging to the first group is loss of heterozygosity (LOH) at chromosome region 6p21.3, which can lead to HLA haplotype loss. In this investigation, the frequency of LOH at 6p21 chromosome region was studied in 69 bladder carcinomas. Short tandem repeat analysis showed that 35% of cases had LOH in this chromosome region. By considering these results together with immunohistological findings previously published by our group, we identified a distribution pattern of HLA class I altered phenotypes in bladder cancer. The most frequently altered phenotype in bladder carcinomas was total loss of HLA class I expression (17 cases, 25%), followed by phenotype II associated with HLA haplotype loss (12 cases, 17.5%), and HLA allelic loss (ten cases, 14.5%). Nine cases (13%) were classified as having a compound phenotype, five cases (7%) as having HLA locus loss, and in 16 cases (23%) no alteration in HLA expression was detected. An important conclusion of this report is that a combination of different molecular and immunohistological techniques is required to precisely define which HLA alleles are lost during tumor progression and to characterize the underlying mechanisms of these losses. These studies should be performed when a cancer patient is to be included in an immunotherapy protocol that aims to stimulate different immune effector mechanisms.  相似文献   

20.
No published data are available about the expression of peroxisome proliferator-activated receptor γ (PPARγ) and the role of PPARγ in retinoblastoma protein (RB)-deficient human colorectal cancer (CRC) cells (SNU-C4 and SNU-C2A). Our aim was to investigate whether PPARγ is expressed in SNU-C4 and SNU-C2A cells and to elucidate possible molecular mechanisms underlying the effect of pioglitazone, a synthetic ligand for PPARγ, on cell growth in these cell lines. RT-PCR and Western blot analysis showed that both human CRC cell lines expressed PPARγ mRNA and protein. Pioglitazone inhibited the cell growth of both cell lines through G2/M phase block and apoptosis. In addition, pioglitazone caused a down-regulation of the X chromosome-linked inhibitor of apoptosis (XIAP), Bcl-2, and cyclooxygenase-2 (COX-2) under conditions leading to PPARγ down-regulation. These results suggest that pioglitazone may have therapeutic relevance or significance in the treatment of human CRC, and the down-regulation of XIAP, Bcl-2, and COX-2 may contribute to pioglitazone-induced apoptosis in these and other RB-deficient cell lines and tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号