首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of protein by spectrophotometry at 205 nm   总被引:54,自引:1,他引:53  
A method is described for the measurement of protein concentration by using the peptide bond absorption at 205 nm. ?205 is estimated, allowing for the absorption due to Trp and Tyr residues, by measuring the absorbance at 280 nm as well as at 205 nm. The estimated ?205 is compared with the actual ?205 for a number of proteins, the mean error being less than 2%. This is about three times better than using an average ?2051 mg/ml of 31 and approaches the range of experimental error inherent in any method of protein estimation.  相似文献   

2.
M Nakagawa  S Kikkawa  T Iwasa    M Tsuda 《Biophysical journal》1997,72(5):2320-2328
Light-induced protein conformational changes in the photolysis of octopus rhodopsin were measured with a highly sensitive time-resolved transient UV absorption spectrophotometer with nanosecond time resolution. A negative band around 280 nm in the lumirhodopsin minus rhodopsin spectra suggests that alteration of the environment of some of the tryptophan residues has taken place before the formation of lumirhodopsin. A small recovery of the absorbance at 280 nm was observed in the transformation of lumirhodopsin to mesorhodopsin. Kinetic parameters suggest that major conformational changes have taken place in the transformation of mesorhodopsin to acid metarhodopsin. In this transformation, drastic changes of amplitude and a shift of a difference absorption band around 280 nm take place, which suggest that some of the tryptophan residues of rhodopsin become exposed to a hydrophilic environment.  相似文献   

3.
To assess the effects of adsorption on protein structure, ultraviolet optical absorption spectra of myoglobin (Mb) bound to polydimethylsiloxane (PDMS) were measured. A flow cell, which enabled adsorption under controlled hydrodynamic conditions, was used in conjunction with a conventional spectrophotometer to obtain the spectra. Adsorption to PDMS reduced significantly the absorbance in the Soret region of the Mb spectrum, whereas the spectrum in the region near 280 nm was essentially unaffected. This result showed that disruption of the native structure of Mb occurs following interaction with PDMS. Furthermore, the change in the absorption spectrum may indicate loss of heme from the heme pocket of the adsorbed protein. Mb structure was altered from its solution configuration within fifteen min of contact with the surface. Exchange of adsorbed Mb with Mb in solution had little or no effect on the absorption spectrum of the surface-confined protein, indicating that exchange occurs only between conformationally altered species or between native species.  相似文献   

4.
A low molecular mass peptide like compound with antimicrobial and trypsin inhibitory activity was isolated from the seeds of Lagenaria siceraria. It was purified by ion-exchange and reverse-phase chromatography. The molecular weight of the compound was 678.9 Dalton as determined by MALDI-MS. The infra-red absorbance at 1639 cm?1, characteristic of an amide bond, by FTIR spectroscopic studies, and absorption at 214 nm on spectrophotometer indicates the peptidic nature of the compound. The compound exhibited antimicrobial activity when tested against Escherichia coli with minimum inhibitory concentration of 20 μM, and trypsin inhibitory activity inhibiting trypsin at a molar ratio of 1:2.  相似文献   

5.
Dialysis membranes used for simultaneous dialysis-concentration required pretreatment to remove uv-absorbing compounds leached from the membranes and to reduce the absorption of protein to the membranes. This was accomplished with sodium carbonate and ethanol or with "sulfur-removal solutions." Protein determinations were made with a micro-Bradford protein reaction and with uv absorbance at 280 nm. Soluble membrane components contributed to aberrant uv spectra and altered the ratio of 280/260-nm absorbance. Simultaneous dialysis and concentration in the micro protein dialyzer-concentrator apparatus, combining aspects of thin-layer dialysis and ultrafiltration, resulted in rapid removal of salts from the protein solutions. Prior treatment of membranes reduced uncertainties in retentate recoveries, eliminated uv-absorbing components of membranes, and improved recoveries of protein.  相似文献   

6.
Competitive tests were used to determine how the quantitative and spectral characteristics of an electrocutor trap light source affected the attraction of the house-fly, Musca domestica L. It was found that an increase in the radiant flux (Fe) of the trap lamps due to an increase in radiant area (A), caused a much larger increase in catch than if radiant flux was increased through higher radiant emittance (Mc). The results from electroretinograms recorded in response to different levels of Me were consistent with the idea that at a given wavelength the attractiveness of a lamp is attributable to the quantitative output perceived by the fly. Of nine fluorescent lamps, the most attractive had peak emission at 340 nm. A blue lamp (peak emission 419 nm) attracted less than a third as many flies as the UV emitting lamps, and a white lamp (peak emission 585 nm) attracted fewer than a quarter as many. The corresponding photoreceptor responses were measured using the electroretinogram. At wavelengths above 400 nm the attractiveness of a lamp to a fly appears to be lower relatively than the photoreceptor response. Within the ultraviolet region (300 nm–400 nm) attractiveness is again attributable to the quantitative output perceived by the fly. It is concluded that there is a genuine behavioural preference for lamp emissions in the ultraviolet region.  相似文献   

7.
Reaction centers were isolated from a carotenoidless mutant of Rhodopseudomonas gelatinosa by hydroxyapatite chromatography of purified chromatophores treated with lauryl dimethyl amine oxide. Absorption spectra and spectra of light-induced absorbance changes are similar to those of reaction centers from Rhodopseudomonas sphaeroides. The ratio of absorbance at 280 nm to that at 799 nm was 1.8 in the purest preparations. The extinction coefficient at the 799 nm absorption maximum was estimated to be 305 ± 20 mM?1 · cm?1. The molecular weight based on protein and chromophore assays was found to be 1.5 · 105; the reaction center protein accounted for 6% of the total membrane protein. These reaction centers contained no cytochrome and showed just two components of apparent molecular weights 33 000 and 25 000 in polyacrylamide gel electrophoresis. The chromatophores contained 42 molecules of antenna bacteriochlorophyll for each reaction center.  相似文献   

8.
A spectrophotometric method makes it possible to determine the concentration of a protein after covalent modification of tryptophan residues by 2-hydroxy-5-nitrobenzyl bromide. Molar absorption coefficients for the 2-hydroxy-5-nitrobenzyl chromophore, reported here in the pH range from 4.0 to 10.9, can be used to correct the protein absorbance values at 280 nm, which then provides the basis for calculating protein concentration in the usual way. The method was tested with alpha-lactalbumin, beta-lactoglobulin, pepsin, and soybean trypsin inhibitor; spectrophotometrically estimated concentrations of these proteins agreed closely with values obtained by amino acid analysis.  相似文献   

9.
The direct, ultraviolet spectrophotometric determination of protein absorption coefficients was found to be more reproducible and accurate when diluting was replaced by chromatography and multiwavelength detection. Four different ultraviolet spectrophotometric methods, described in the literature, were compared by calculating A0.1%280 values from the spectra of 25 proteins, obtained by chromatography. Only two methods, i.e., one based on the absorbance at 210 nm and the other on the absorbance at 205 nm, corrected for the absorbance of aromatic amino acids at that wavelength, were sufficiently accurate to be of potential use for the determination of unknown proteins. It was found, however that with uncorrected A203 values even better results could be achieved. Using 7 well-defined proteins the equation A0.1%280 = 38.69 X A280/A203 - 0.01 was established by linear regression. A0.1%280 values for 14 pure proteins calculated with this equation showed a mean deviation of only 4% from literature values. Since similar deviations were seen with 5 chromophoric and 7 glycoproteins, 3 and 7% respectively, the method may have universal applicability. In the configuration used, only 40 micrograms of a protein is required for the chromatographic determination of its absorption coefficient.  相似文献   

10.
Dipicolinic acid was extracted from approximately 0.1 mg spores or 0.5 ml of sporulating culture with 20 mM HCl for 10 min at 100 degrees C. The suspension was diluted with 5 mM Ca2+, 100 mM Tris, pH 7.6, centrifuged, and the first derivative of the uv absorbance spectrum recorded from 275 nm to 285 nm. DPA concentration was determined from the difference between the maximum at 276.6 nm and the minimum at 280 nm. The use of the difference between two first derivative values removed possible interference from sloping baselines. Turbidity, nucleic acids, and bacteriological media did not interfere. Analysis time for four extracts was 4 min using a spectrophotometer reading at 0.1-nm intervals. Dipicolinate at 0.1 mM gave 0.184 absorbance/nm at 25 degrees C. The coefficient of variation was 1.5%, and the detection limit 1 microM.  相似文献   

11.
We describe a rapid method for monitoring the cell growth and decline phases in suspension cultures of animal cells. During the cell growth phase, ultraviolet (UV)-absorbing components in the medium are consumed, but at later times as cells begin to die, UV-absorbing molecules such as proteins are released into the medium. Measuring the absorbance at 280 nm (A280) with a NanoDrop spectrophotometer, an inverse correlation between the onset of the cell decline phase and A280 was observed. This simple method can be applied to quickly determine the beginning of the decline phase of cultures of mammalian and insect cells in suspension.  相似文献   

12.
D G Cross 《Biochemistry》1975,14(2):357-362
Time-dependent changes in the ultraviolet absorbance of the adenine chromophore are observed in the stopped-flow spectrophotometer when adenosine and its analogs are rapidly transferred from protium oxide to deuterium oxide. These absorbance changes are shown to result from hydrogen exchange in the exocyclic amino groups of the purine ribonucleosides by using derivatives of adenosine in which methyl groups replace exchangeable hydrogens and by showing that the general characteristics of hydrogen exchange in adenosine analogs agree with those found here. A study of the dependence of hydrogen-exchange rate constants on adenosine, AMP, and phosphate concentration showed there is a second-order dependence on AMP concentration which is primarily due to intermolecular catalysis by the phosphate group of the nucleotide. The deuterium oxide perturbation difference spectrum, obtained at equilibrium, was found to contain two components that result from blue shifts of the adenine chromophore absorbance: (1) a shift cause by the substitution of deuterium for protium in the ring (N1) nitrogen and exocyclic nitrogens, and (2) a shift associated with a change in the polarizability of the medium. Since the theory of solvent perturbation, which is used to measure the relative "exposure" of chromophores in macromolecules, assumes that the spectral shifts observed are solely due to (2) above, the use of deuterium oxide as a measure of chromophore exposure to perturbants the size of water must be reexamined.  相似文献   

13.
We investigated how the Bradford assay for measurements of protein released from a drug formulation may be affected by a concomitant release of a pharmaceutical polymer used to formulate the protein delivery device. The main result is that polymer-caused perturbations of the Coomassie dye absorbance at the Bradford monitoring wavelength (595 nm) can be identified and corrected by recording absorption spectra in the region of 350–850 mm. The pharmaceutical polymers Carbopol and chitosan illustrate two potential types of perturbations in the Bradford assay, whereas the third polymer, hydroxypropylmethylcellulose (HPMC), acts as a nonperturbing control. Carbopol increases the apparent absorbance at 595 nm because the polymer aggregates at the low pH of the Bradford protocol, causing a turbidity contribution that can be corrected quantitatively at 595 nm by measuring the sample absorbance at 850 nm outside the dye absorption band. Chitosan is a cationic polymer under Bradford conditions and interacts directly with the anionic Coomassie dye and perturbs its absorption spectrum, including 595 nm. In this case, the Bradford method remains useful if the polymer concentration is known but should be used with caution in release studies where the polymer concentration may vary and needs to be measured independently.  相似文献   

14.
A second ferredoxin protein was isolated from the thermophilic anaerobic bacterium Clostridium thermoaceticum and termed ferredoxin II. This ferredoxin was found to contain 7.9 +/- 0.3 iron atoms and 7.4 +/- 0.4 acid-labile sulfur atoms per mol of protein. Extrusion studies of the iron-sulfur centers showed the presence of two [Fe4-S4] centers per mol of protein and accounted for all of the iron present. The absorption spectrum was characterized by maxima at 390 nm (epsilon 390 = 30,400 M-1cm-1) and 280 nm (epsilon 280 = 41.400 M-1 cm-1) and by a shoulder at 300 nm. The ration of the absorbance of the pure protein at 390 nm to the absorbance at 280 nm was 0.74. Electron paramagnetic resonance data showed a weak signal in the oxidized state, and the reduced ferredoxin exhibited a spectrum typical of [Fe4-S4] clusters. Double integration of the reduced spectra showed that two electrons were necessary for the complete reduction of ferredoxin II. Amino histidine, and 1 arginine, and a molecular weight of 6,748 for the native protein. The ferredoxin is stable under anaerobic conditions for 60 min at 70 degrees C. The average oxidation-reduction potential for the two [Fe4-S4] centers was measured as -365 mV.  相似文献   

15.
《Phytochemistry》1987,26(4):945-948
Alkyleysteine lyase (EC 4.4.1.6) was purified essentially to homogeneity from both fresh hypocotyls of 5- to 8-day-old etiolated seedlings of Acacia farnesiana and acetone powders of such hypocotyls. The enzyme from the fresh material had twice the specific activity of that from the acetone powder. Sodium dodecylsulphate gel electrophoresis showed that both enzymes were composed of a subunit of Mrca 42 000. The final enzyme solutions were quite different in their absorbance spectra. The fresh hypocotyl enzyme had an absorbance maximum at 425 nm in addition to the 280 nm protein absorbance. This maximum in the visible region is due to bound pyridoxal phosphate. The acetone powder enzyme had the same maxima and in addition peaks at 498 and 340 nm. The fresh enzyme contained 1.8 mol cofactor/mol enzyme and the acetone powder enzyme 1.0 mol/mol. The KKm for the probable natural substrate L-djenkolate was the same for both enzymes, 0.8 mM, but the Vmax for the fresh was twice that of the acetone powder enzyme. The common practice of using acetone powder preparations for starting material in enzyme purifications would appear to require some caution.  相似文献   

16.
The properties of purified hydrogenase [EC 1.12.2.1] solubilized from particulate fraction of sonicated Desulfovibrio vulgaris cells are described. The enzyme was a brownish iron-sulfur protein of molecular weight 89,000, composed of two different subunits (mol. wt.: 28,000 and 59,000), and it contained 7-9 iron atoms and 7-8 labile sulfide ions. Molybdenum was not detected in the preparation. The absorption spectrum of the enzyme was characteristic of iron-sulfur proteins. The millimolar absorbance coefficients of the enzyme were about 164 at 280nm, and 47 at 400nm. The absorption spectrum of the enzyme in the visible region changed upon incubating the enzyme under H2 in the presence of cytochrome c3, but not in its absence. This spectral change was due to the reduction of the enzyme. The absorbance ratio at 400nm of the reduced and the oxidized forms of the enzyme was 0.66. The activity of the enzyme was hardly affected by metal-complexing agents such as cyanide, azide, 1,10-phenanthroline, etc., except for CO, which was a strong inhibitor of the enzyme. The activity was inhibited by SH-reagents such as p-chloromercuribenzenesulfonate. The enzyme was significantly resistant to urea, but susceptible to sodium dodecyl sulfate. These properties were very similar to those of clostridial hydrogenase [EC 1.12.7.1], in spite of differences in the acceptor specificity and subunit structure.  相似文献   

17.
The spectrophotometric methods for determination of protein concentration in solution are analysed. According to the given data it has been concluded that the method based on the measurement of difference in light absorption by protein solution at 235 and 280 nm is more accurate as compared with the method of absorption determination at 260 and 280 nm. The linear regression coefficient is used in calculation.  相似文献   

18.
The ultraviolet absorbance of squid and octopus rhodopsin changes reversibly at 234 nm and near 280 nm in the interconversion of rhodopsin and metarhodopsin. The absorbance change near 280 nm is ascribed to both protein and chromophore parts. Rhodopsin is photoregenerated from metarhodopsin via an intermediate, P380, on irradiation with yellow light (λ > 520 nm). The ultraviolet absorbance decreases in the change from rhodopsin to metarhodopsin and recovers in two steps; mostly in the process from metarhodopsin to P380 and to a lesser extent in the process from P380 to rhodopsin. P380 has a circular dichroism (CD) band at 380 nm and its magnitude is the same order as that of rhodopsin. Thus it is considered that the molecular structure of P380 is close to that of rhodopsin and that the chromophore is fixed to opsin as in rhodopsin. In the change from metarhodopsin to P380, the chromophore is isomerized from the all-trans to the 11-cis form, and the conformation of opsin changes to fit 11-cis retinal. In the change from P380 to rhodopsin, a small change in the conformation of the protein part and the protonation of the Schiff base, the primary retinal-opsin link, occur.  相似文献   

19.
20.
Reaction centers were isolated from a carotenoidless mutant of Rhodopseudomonas gelatinosa by hydroxyapatite chromatography of purified chromatophores treated with lauryl dimethyl amine oxide. Absorption spectra and spectra of light-induced absorbance changes are similar to those of reaction centers from Rhodopseudomonas sphaeroides. The ratio of absorbance at 280 nm to that at 799 nm was 1.8 in the purest preparations. The extinction coefficient at the 799 nm absorption maximum was estimated to be 305 +/- 20 mM--1 . CM--1. The molecular weight based on protein and chromophore assays was found to be 1.5 . 10(5); the reaction center protein accounted for 6% of the total membrane protein. These reaction centers contained no cytochrome and showed just two components of apparent molecular weights 33 000 and 25 000 in polyacrylamide gel electrophoresis. The chromatophores contained 42 molecules of antenna bacteriochlorophyll for each reaction center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号