首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specific liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed and validated for the determination of lercanidipine, a dihydropyridine calcium channel blocker, in human plasma. Lercanidipine R-D3 was used as internal standard (IS). The drug was extracted from plasma using liquid-liquid extraction technique utilizing hexane: ethyl acetate as extraction solvent. The samples were analyzed using a prepacked Thermo Hypersil C(8) column and a mobile phase composed of a mixture of aqueous acetic acid and triethylamine in methanol. An ion trap mass spectrometer equipped with electrospray ionization (ESI) source operating in the positive ion mode was used to develop and validate the method. The method was proved to be sensitive and specific by testing six different human plasma batches. Linearity was established for the concentration ranges of 0.1-16 ng/ml with a regression factor of 0.9996. The lower limit of quantitation was identifiable and reproducible at 0.1 ng/ml with a precision of 7.2%.  相似文献   

2.
A simple and sensitive method for the determination of terbutaline in serum and urine has been developed. A mass spectrometer in the multiple ion detection mode was used as a gas chromatographic detector. Levels were monitored after oral and subcutaneous administration of the drug. The sensitivity is 1 ng/ml using 1 ml of serum.  相似文献   

3.
A method for the quantitative determination of the β-stimulant formoterol in urine, using a gas chromatograph—mass spectrometer, is described. Formoterol can be analyzed after the addition of a deuterium-labelled internal standard and conversion to a mixed bispentafluoropropionyl-methyl derivative for selected ion monitoring. The detection limit was 5 ng/ml.Urinalysis after the oral administration of formoterol fumarate, using a combined enzymic hydrolysis method, revealed that the drug was conjugated with glucuronic acid in rats, dogs and humans.  相似文献   

4.
A sensitive method has been developed for the trace analysis of the sulphur mustard metabolite thiodiglycol (TDG) in urine, and its oxidation product thiodiglycol sulphoxide (TDGO) after reduction to thiodiglycol. Thiodiglycol was extracted from urine by solid phase extraction onto a polymeric cartridge and, after isolation, converted to its bis-heptafluorobutyryl derivative with heptafluorobutyryl imidazole. An ion trap mass spectrometer in selected reaction monitoring mode detected spiked concentrations down to 0.2 ng/ml with a signal to noise ratio>3:1. Urine, from human volunteers with no known exposure to sulphur mustard, contained detectable but very low concentrations (<0.2 ng/ml) of thiodiglycol, consistent with previous observations using different methodologies. Combined concentrations of thiodiglycol and thiodiglycol sulphoxide were determined after reduction of the latter with titanium trichloride. In this case higher background levels (up to 3 ng/ml) were observed, consistent with the sulphoxide being the major excretion product of the two metabolites. The method was applied to urine samples, stored frozen for 13 years, from two casualties of accidental mustard poisoning. Levels of thiodiglycol were 1 and 3 ng/ml, which increased to 78 and 104 ng/ml after treatment of the urine with titanium trichloride.  相似文献   

5.
A gas chromatographic—mass fragmentographic method was developed for the determination of homopantothenic acid in plasma. Acidified plasma was deproteinized by extraction with chloroform and subsequently the aqueous layer was extracted with ethyl acetate. The organic layer containing homopantothenic acid was reduced to dryness, and the resulting residue was redissolved in N,O-bis(trimethylsilyl)trifluoroacetamide—pyridine solution to allow trimethylsilylation. Aliquots of this solution were injected into the gas chromatograph—mass spectrometer and analyzed by the selected ion monitoring method using l-ascorbic acid as an internal standard. The detection limit for homopantothenic acid was 5 ng/ml of plasma.A precise and sensitive assay for the determination of homopantothenic acid in plasma was established.  相似文献   

6.
A sensitive and specific high-performance liquid chromatographic assay with electrospray ionization mass spectrometry detection (LC-ESI-MS) has been developed and validated for the identification and quantification of the novel anticholinergic drug phencynonate in rat blood and urine. The sample pretreatment involves basification and iterative liquid-liquid extraction with ethyl ether-dichloromethane (2:1, v/v) solution, followed by LC separation and positive electrospray ionization mass spectrometry detection. The chromatography was on BetaBasic-18 column (150 mm x 2.1mm i.d., 3 microm). The mobile phase was composed of methanol-water (85:15, v/v), containing 0.5 per thousand formic acid, which was pumped at a flow-rate of 0.2 ml/min. Thiencynonate was selected as the internal standard (IS). Simultaneous MS detection of phencynonate and IS was performed at m/z 358.4 (phencynonate), m/z 364 (thiencynonate), and the selected reaction ion monitoring (SRM) of the two compounds was at 156. Phencynonate eluted at approximately 5.25 min, thiencynonate eluted at approximately 5.10 min and no endogenous materials interfered with their measurement. Linearity was obtained over the concentration range of 1-100 ng/ml in rat blood and 1-500 ng/ml in rat urine. The lower limit of quantification (LLOQ) was reproducible at 1 ng/ml in both of rat blood and urine. The precision measured was obtained from 2.92 to 9.76% in rat blood and 4.17 to 9.76% in rat urine. Extraction recoveries were in the range of 69.57-79.49% in blood and 56.85-64.86% in urine. This method was successfully applied to the identification and quantification of phencynonate in pharmacokinetic studies.  相似文献   

7.
A gas chromatographic–mass spectrometric method was developed for the determination of residues of clenbuterol in bovine urine. The method involves a simple cation-exchange clean-up and concentration of clenbuterol in the acidified urine, followed by ethyl acetate extraction. The analyte is determined as the di-trimethylsilyl derivative and quantitated against an internal standard of penbutolol. Using a 5-ml sample of urine, a detection limit of 0.07 ng/ml can be achieved with recoveries close to 100% for fortification levels of 0.2 and 1 ng/ml. By increasing the sample volume to 50 ml, a detection limit below 0.01 ng/ml was achievable with recovery averaging 70%. The coefficient of variation of the assay ranged from 15% at 0.01 ng/ml (50-ml sample) to 6% at 1 ng/ml (5-ml sample). It was demonstrated that the method can detect the presence of clenbuterol in bovine urine at sub-ppb (ng/ml) levels using low resolution GC–MS with electron impact (EI) ionization.  相似文献   

8.
We have developed a highly selective and sensitive analytical method to quantify paraquat and diquat by use of high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS). The sample preparation includes solid phase extraction that uses weak cation exchange cartridges. These highly charged dual quaternary amines were not retained by standard reversed phase columns, but they could be adequately separated through HPLC with a HILIC column. The detection was carried out with a triple quadrupole mass spectrometer with an electrospray ionization probe in positive ion mode in multiple reaction monitoring. Repeated analysis in human urine samples spiked with low (5 ng/ml), medium (15 ng/ml), and high (30 ng/ml) concentrations of the analytes yielded relative standard deviations of less than 9%. The extraction efficiencies ranged from 77.7% to 94.2%. The limits of detection were in the range of 1 ng/ml.  相似文献   

9.
An analysis method for the methylphosphonic acid metabolites of sarin in urine using trimethylsilyl derivatization and flame photometric detection is described in this report. Authentic reference standards of isopropyl methylphosphonic acid (IMPA) and ethyl methylphosphonic acid (EMPA) as well as methylphosphonic acid were employed to estimate the concentration in human urine. A sample pretreatment procedure was developed for urine using a column of cation-loaded ion-exchange resins (Ag+-, Ba2+- or H+-Dowex) and adjusting the pH of the eluate from the column to 3.75–3.85 improved recovery of the target compounds. The eluate was evaporated to dryness under vacuum prior to trimethylsilylation, to remove water and any hydroxy- or amino-carrying volatile substances. The sarin metabolites, because of their low volatility, were concentrated and could be derivatized for analysis. The use of synthesized authentic sarin and ethylsarin metabolites, i.e., IMPA and EMPA, made it possible to establish the necessary sample pretreatment procedures for derivatization and gas chromatography–flame photometric detection (GC–FPD) analysis. The detection limits were 0.025 ppm both for EMPA and IMPA, and 0.625 μM for MPA, respectively. This method can be useful for estimating the exposure level to sarin by assaying the metabolites in urine and it is applicable to a large numbers of samples.  相似文献   

10.
In this work we present a hybrid linear trap/Fourier transform ion cyclotron resonance (ICR) mass spectrometer to perform protein sequencing using the bottom-up approach. We demonstrate that incorporation of the linear trap greatly enhances the overall performance of the hybrid system for the study of complex peptide mixtures separated by fast high-performance liquid chromatography gradients. The ability to detect in the linear trap enables employment of automatic gain control to greatly reduce space charging in the ICR cell irregardless of ion flux. Resulting accurate mass measurements of 2 ppm or better using external calibration are achieved for the base peak as well as ions at 2% relative abundance. The linear trap is used to perform ion accumulation and activation prior to detection in the ICR cell which increases the scan rate. The increased duty cycle allows for data-dependent mass analysis of coeluting peptides to be acquired increasing protein sequence coverage without increasing the gradient length. In addition, the linear trap could be used as an ion detection device to perform simultaneous detection of tandem mass spectra with full scan mass spectral detection in the ICR cell resulting in the fastest scan cycles for performing bottom-up sequencing of protein digests. Comparisons of protein sequence coverage are presented for product ion detection in the linear trap and ICR cell.  相似文献   

11.
A simple, sensitive and specific HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the simultaneous quantification of tiloronoxim and its major active metabolite, tilorone, in human urine. The analytes, together with metoprolol, which was employed as an internal standard (IS), were extracted with a mixture solvent of chloroform/ethyl ether (1/2, v/v). The chromatographic separation was performed on a narrow-bore reversed phase HPLC column with a gradient mobile phase of methanol/water containing 15 mM ammonium bicarbonate (pH 10.5). The API 3,000 mass spectrometer was equipped with a TurboIonSpray interface and was operated on positive-ion, multiple reaction-monitoring (MRM) mode. The mass transitions monitored were m/z 426.3-->100.0, m/z 411.3-->100.0 and m/z 268.3-->116.1 for tiloronoxim, tilorone and the IS, respectively. The assay exhibited a linear dynamic range of 1-100 ng/ml for both tiloronoxim and tilorone based on the analysis of 0.2 ml aliquots of urine. The lower limit of quantification was 1 ng/ml for both compounds. Acceptable precision and accuracies were obtained for concentrations over the standard curve ranges. Run time of 8 min for each injection made it possible to analyze a high throughput of urine samples. The assay has been successfully used to analyze human urine samples from healthy volunteers.  相似文献   

12.
The molecular composition of phosphatidylcholines (PCs) in total lipid extracts was characterized by a combination of multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer and MS3 fragmentation on an ion trap mass spectrometer. Precursor ion spectra for 50 acyl anion fragments of fatty acids (fatty acid scanning) acquired in parallel increased the specificity and the dynamic range of the detection of PCs and identified the fatty acid moieties in individual PC species. Subsequent analysis of detected PC peaks by MS3 fragmentation on an ion trap mass spectrometer quantified the relative amount of their positional isomers, thus providing the most detailed and comprehensive characterization of the molecular composition of the pool of PCs at the low-picomole level. The method is vastly simplified, compared with conventional approaches, and does not require preliminary separation of lipid classes or of individual molecular species, enzymatic digestion, or chemical derivatization. The approach was validated by the comparative analysis of the molecular composition of PCs from human red blood cells. In the total lipid extract of Madin-Darby canine kidney II cells, we detected 46 PC species with unique fatty acid composition and demonstrated that the presence of positional isomers almost doubled the total number of individual molecular species.  相似文献   

13.
Isobutane chemical ionization gas chromatography mass spectometry of the N-trifluoroacetyl-carboxy-n-butyl ester derivatives of amino acids, using a commercial per-13C-amino acid mixture as internal standards, provided a sensitive and specific method for quantitative analysis of fourteen urinary alpha-amino acids. A computer controlled quadrupole mass spectrometer was used in a selected ion monitoring mode to record the ion current due to the protonated molecular ions of each alpha-amino acid/13C analogue pair. BASIC programmes located peak maxima, and using previously established standard curves, calculated the amino acid content on the bases of both peak height and peak area ratios. Duplicate amino acid analyses are possible on 5 microliter of urine. Instrumental analysis required 25 minutes, automated data processing 10 minutes, and sample preparation 2 hours. Detection limits approached 1 ng with a typical mean standard deviation of 2% for the instrumental analysis.  相似文献   

14.
For the unequivocal proof of the use of a nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), a rapid, accurate and sensitive method which allows us to identify its main hydrolysis product ethyl methylphosphonic acid (EMPA) in human serum was explored by GC-MS. GC-MS analysis was performed after solvent extraction with acetonitrile in acidic conditions from the serum sample, which was previously deproteinized by micro-ultrafiltration, and subsequent tert.-butyldimethylsilyl derivatization with N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) with 1% tert.-butyldimethylsilyl chloride (t-BDMSC). Linear calibration curves were obtained in the concentration range from 50 to 500 ng/ml for EMPA in the full-scan EI mode and from 5 to 50 ng/ml for EMPA in the SIM EI mode. The relative standard deviation obtained at a sample concentration of 50 ng/ml was 8.4% in the full-scan mode and 7.3% in the SIM mode. Upon applying the full-scan EI and CI mode, 40 ng/ml and 80 ng/ml were the detection limits. Using the SIM-EI mode, in which the ion at m/z 153 was chosen, the limit was 3 ng/ml.  相似文献   

15.
Indapamide and internal standard (5-chloro-2-methoxy-N-[2-(4-sulphamoylphenyl)ethyl]benzamide) were isolated from plasma by a single step liquid-liquid extraction in t-butyl methyl ether. The chromatographic separation was achieved on a reversed-phase C(18) monolithic column with a mobile phase consisting in a methanol/aqueous 0.1% formic acid mixture and a flow rate of 0.8 ml/min, in isocratic conditions, within 11 min. Target compounds were transferred in an ion trap analyzer via an atmospheric pressure electrospray interface (AP-ESI). The mass analyzer was used in a selected reaction monitoring (SRM) mode, in order to enhance on detection selectivity. Whole method produces quantitation limit for indapamide of 1 ng/ml. Method was successfully applied to assess bioequivalence of two sustained release marketed pharmaceutical formulations of indapamide 1.5 mg coated tablets, carried-out in a single/multiple doses, randomized design.  相似文献   

16.
This report evaluates the use of a quadrupolar ion trap for quantitation in a bioanalytical laboratory. The evaluation was accomplished with the cross-validation of an LC–MS–MS quantitative method previously validated on a triple quadrupole mass spectrometer. The method was a multi-level determination of the anti-obesity drug, orlistat, in human plasma. The method has been refined previously on a triple quadrupole instrument to provide rapid sample throughput with robust reproducibility at sub-nanogram detection limits. Optimization of the method on the ion trap required improved chromatographic separation of orlistat from interfering plasma matrix components coextracted during the initial liquid–liquid extraction of plasma samples. The ion trap produces full-scan collision-induced dissociation mass spectra containing characteristic orlistat fragment ions that are useful for quantitation. Data collection on the ion trap required a precursor ion isolation width of 3.0 Da and optimal quantitative results were obtained when three fragment ions were monitored with a 1.8 Da window for each ion. Although a direct cross-validation between the ion trap and the tandem triple quadrupole mass spectrometer was not possible, quantitative results for orlistat comparable to those obtained from the triple quadrupole instrument were achieved by the ion trap with the modified method. The limit of quantitation for orlistat in plasma on the ion trap was 0.3 ng ml−1 with a linear dynamic range of 0.3 to 10 ng ml−1. Precision and accuracy varied from 4 to 15% over the quantitation range. The overall results provide an example of the utility of an ion trap in bioanalytical work.  相似文献   

17.
An improved method for the determination of ethyl glucuronide (EtG) in human serum and urine was developed using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS). EtG was isolated from serum and urine using aminopropyl SPE columns after deproteination with perchloric acid and hydrochloric acid, respectively. The chromatographic separation was performed on a DB 1701 fused-silica column. At a signal-to-noise ratio of 3:1, a quantification limit of 173 and 560 ng/ml and a detection limit of 37 and 168 ng/ml could be determined for serum and urine, respectively. This indicates high specificity and sensitivity of the described method. The mean absolute recovery was 85%, while intra- and inter-day precision of the assay were all less than 7.5%. The linearity of the calibration curves was satisfying as indicated by correlation coefficients of >0.993. The presented method provides the basis for determination and identification of EtG in human serum and urine samples in a low-concentration range for monitoring alcohol consumption during treatment for alcohol dependence and comorbid alcohol abuse of psychotherapy patients.  相似文献   

18.
A derivatization-extraction method that avoids tedious preconcentration steps is established in order to determine amino acids accurately at nanogram levels. The method involves conversion of the analytes of concern to N(O,S)-ethoxycarbonyl amino acid ethyl esters and subsequent extraction by single-drop microextraction (SDME) followed by GC analysis. The reaction proceeds smoothly and rapidly under ultrasonication which removes the bubbles from the bulk solution. Precision is acceptable and 12 non-hydrolyzed amino acids can be determined in urine in this manner. As long as the extraction conditions are consistently applied, quantitative analysis can be performed accurately. The limits of detection were satisfactory in the range 0.010-0.025 microg/ml for GC-FID and 0.26-68 ng/ml for GC-MS(SIM) with 1 ml sample volume.  相似文献   

19.
We have presented a simple and sensitive method for determining pethidine, a narcotic analgesic drug in body fluids by gas chromatography (GC)/surface ionization organic mass spectrometry (SIOMS). Good linearity was obtained in the range of 0.625–25 ng/ml of whole blood and urine by mass chromatography, and in the range of 0.05–2 ng/ml of whole blood by selected ion monitoring (SIM). Pethidine and diphenylpyraline (internal standard) were extracted from body fluids with Bond Elut Certify cartridges; their recoveries were above 95%. The detection limits (signal-to-noise ratio=3) were estimated to be 0.2 ng/ml of whole blood or urine by mass chromatography, 0.02 ng/ml of whole blood by SIM.  相似文献   

20.
A simple, sensitive and specific automated SPE-LC-MS-MS assay was developed and validated for determination of valdecoxib (I), its hydroxylated metabolite (II) and carboxylic acid metabolite (III) in human urine. The analytes (I, II and III) and a structural analogue internal standard (I.S.) were extracted on a C(18) solid-phase extraction cartridge using a Zymark RapidTrace automation system. The chromatographic separation was performed on a narrow-bore reverse phase HPLC column with a mobile phase of acetonitrile-water (50:50, v/v) containing 10 mM 4-methylmorpholine (pH 6.0). The analytes were ionized using negative electrospray mass spectrometry, then detected by multiple reaction monitoring with a tandem mass spectrometer. The precursor to product ion transitions of m/z 313-->118, m/z 329-->196 and m/z 343-->196 were used to measure I, II and III, respectively. The assay exhibited a linear dynamic range of 1-200 ng/ml for I and II and 2-200 ng/ml for III in human urine. The lower limit of quantitation was 1 ng/ml for I and II and 2 ng/ml for III. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Run time of 5.5 min for each sample made it possible to analyze a throughput of 70 human urine samples per run. The assay has been successfully used to analyze human urine samples to support clinical phase I and II studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号