首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phytochrome content was determined in intact fern sporesof Lygodium japonicum (Thunb.) Sw. by difference spectrophotometry.The spectral characteristics thus estimated in spores whichhad been imbibed for 9 days in darkness were: far-red maximumat 730?2.5 nm, red maximum at 662?1.5 nm and isosbestic pointat 684.5?1.4 nm. A detectable amount of phytochrome first appearedafter 3 days of dark imbibition, and the level then increasedduring the rest of the imbibition period. On the 7th day, thephytochrome content leveled off. During the dark imbibitionperiod, the phytochrome was revealed to be in the PR form. (Received February 22, 1982; Accepted July 9, 1982)  相似文献   

2.
In the fern Lygodium japonicum, the effect of the exogenousapplication of two gibberellin methyl esters, gibberellin A4methyl ester (GA4Me) and gibberellin A20 methyl ester (GA20Me)on spore germination in the dark and uptake of GA4Me and GA20Meby spores was investigated. Tritiated GA4Me and GA20Me wereprepared and used as radioactive tracers. The activity of GA4Mewas more than 100-fold that of GA20Me for the induction of sporegermination. When treated for 24 h, the activity for inducingspore germination remained after removal of the gibberellinmethyl esters from the medium. The amount of GA4Me taken upby spores was more than three times that of GA20Me throughoutthe 24 h time course of treatment. The uptake of both gibberellinmethyl esters was proportional to the external concentrationfor the range of concentrations between 10–9 M and 10–6M. When treated with the tritiated gibberellin methyl estersat 10–6 M and 10–7 M for 24 h, most of the gibberellinmethyl esters taken up by the spores were not metabolized. Althoughthe uptake of the two gibberellin methyl esters differed by3- to 5- fold, their abilities to induce spore germination differedby more than 100-fold. Therefore, the difference in the activityof the two gibberellin methyl esters regarding the inductionof spore germination could not be explained solely by the differencein their uptake. (Received January 11, 1988; Accepted May 26, 1988)  相似文献   

3.
用光镜观察海金沙(Lygodium japonicum)配子体发育和卵发生。海金沙孢子为四面体形,具三裂缝,孢子萌发方式为密穗蕨型(Anemia-type);配子体的发育形态多样,通常丝状体长至3~5个细胞时通过顶细胞纵分裂发育为片状体,进而发育为心形原叶体,在心形原叶体上可产生精子器和颈卵器。但在培养过程中也可产生10个细胞以上的丝状体,这种丝状体发育成的片状体和原叶体形态通常不规则,只产生精子器,不产生颈卵器。原叶体发育是铁线蕨型(Adiantum-type),性器官是薄囊蕨型(Leptosporangiate-type)。切片观察海金沙颈卵器产生于生长点下方表面细胞,经两次分裂形成了顶细胞、初生细胞和基细胞。其中初生细胞再经两次不等分裂产生卵细胞、腹沟细胞和颈沟细胞,此时三个细胞紧密相连,随发育,颈沟细胞和和腹沟细胞退化,卵周围形成了分离腔,光镜观察显示成熟卵细胞上无典型卵膜形成,未观察到受精孔的结构。  相似文献   

4.
蕨类植物孢子与种子植物花粉萌发的比较   总被引:1,自引:0,他引:1  
戴绍军    高晶  牟鸿飞  宋莹莹 《植物学报》2008,25(2):139-148
蕨类植物孢子与种子植物花粉在有性生殖过程中都具有重要的作用。花粉作为种子植物的雄配子体, 通过萌发后极性生长的花粉管将精细胞送到胚囊完成受精作用。蕨类植物孢子作为配子体的原始细胞, 通过不对称的有丝分裂产生一大一小两个细胞, 小细胞萌发出极性生长的假根, 大细胞继续分裂发育为原叶体(配子体)。成熟的花粉和蕨类植物孢子都是代谢高度静止的细胞, 两者的萌发过程不仅都受到各种不同环境因子的影响, 而且在信号转导、极性建立和能量代谢等方面可能有着相似的调控机制。本文综述了蕨类植物孢子和种子植物花粉萌发过程的差异和保守性特征。  相似文献   

5.
蕨类植物孢子与种子植物花粉在有性生殖过程中都具有重要的作用。花粉作为种子植物的雄配子体,通过萌发后极性生长的花粉管将精细胞送到胚囊完成受精作用。蕨类植物孢子作为配子体的原始细胞,通过不对称的有丝分裂产生一大一小两个细胞,小细胞萌发出极性生长的假根,大细胞继续分裂发育为原叶体(配子体)。成熟的花粉和蕨类植物孢子都是代谢高度静止的细胞,两者的萌发过程不仅都受到各种不同环境因子的影响,而且在信号转导、极性建立和能量代谢等方面可能有着相似的调控机制。本文综述了蕨类植物孢子和种子植物花粉萌发过程的差异和保守性特征。  相似文献   

6.
This paper describes the ontogenetic sequence of cell divisionsand associated DNA synthetic patterns observed in sectionedspores of Lygodium japonicum (Thunb.) Sw., collected at differentstages of germination. Following exposure to a saturating doseof red light, the spore undergoes an asymmetric division toform a basal cell, which retains nearly all of the storage inclusions,and an apical cell which expands and protrudes from the rupturedsporoderm. Division of the apical cell results in formationof a protonemal cell and an intermediate cell. Subsequently,the latter cell divides to form the primary rhizoid and a wedgecell adjacent to the protonemal cell. Secondary rhizoids mayarise from later divisions of either the basal cell or the wedgecell. In addition, the wedge cell appears to have the capacityto form a secondary prothal-lial filament. Histochemical localizationof cell constituents indicates an increasing concentration ofcytoplasmic RNA and protein in the presumptive protonemal regionof the spore cell prior to division. Autoradiography of 3H–thymidineincorporation has shown that synthesis of nuclear DNA precedeseach cell division. Although strictly nuclear DNA synthesisoccurs during early stages of germination, extra-nuclear DNAsynthesis increases greatly following division of the sporecell. The results are discussed in relation to earlier studieson cell division patterns seen in whole mount preparations ofgerminating spores of different species of Lygodium. Lygodium japonicum, spore germination, cell division, DNA synthesis  相似文献   

7.
The object of this study was to characterize the pattern ofcell morphogenesis and synthesis of nucleic acids and proteinsduring phytochrome-controlled germination of spores of the fern,Pteris vittata. Phytochrome activation and germination wereinitiated in fully imbibed spores by exposure to a saturatingdose of red light. At timed intervals thereafter, spores werefixed in acrolein and embedded in glycol methacrylate for examinationin the light microscope. The first sign of germination, visiblein sections of the spore 12 h after irradiation, was the hydrolysisof storage protein granules. This was followed by a migrationof the nucleus from its central location to one side of thespore. Subsequently, the protoplast enlarged at the site ofthe nucleus and appeared outside the exine as a papillate structure.An asymmetrical division of the protoplast gave rise to a smallcolourless rhizoid cell and a large, chloroplast-containingprotonemal cell. During the early phase of germination, DNAwas synthesized both in the nucleus and cytoplasm as judgedby autoradiography of [3H]thymidine incorporation. [3H]Uridine,a precursor of RNA synthesis, was incorporated into the nucleolusand the rest of the nuclear material of germinating spores.Protein synthesis monitored by [3H]leucine incorporation occurredboth in the nucleus and cytoplasm during the early stage ofgermination, although a strictly cytoplasmic protein synthesiswas observed later. Addition of cycloheximide completely inhibitedgermination of photoinduced spores and incorporation of labelledprecursors of macromolecule synthesis into cellular components.Actinomycin D was much less effective as an inhibitor of germinationand, even in high concentrations of the drug which effectivelyinhibited DNA and RNA synthesis in spores, proteolysis and proteinsynthesis appeared normal. These findings are discussed withrespect to the regulation of nucleic acid and protein synthesisduring spore germination and the role of phytochrome in theprocess.  相似文献   

8.
Certain fatty acids in the C5 to C18 range, at concentrations as low as 10−5 M, were found to inhibit the germinations of spores of the sensitive fern, Onoclea sensibilis L. The addition of gametophytic culture flltrates of the bracken fern, Pteridium aquilinum (L.) Kuhn, containing antheridogen A, was found to overcome this inhibition and allow the spores to germinate and the gametophytes to develop in a normal fashion. Some fatty acids were found to increase the antheridium-inducing potency of antheridogen A as much as 10-fold. An effect similar to this may promote the diecious reproduction of ferns.  相似文献   

9.
采用顶空固相微萃取和气质联用技术(HS-SPME-GC-MS),首次分析了贵州产海金沙根和叶的挥发性成分。从根中鉴定33了种组分,从叶中鉴定了51种组分。其中有18种组分二者是相同的。海金沙根中的烷烃在植物生长的过程中被酶催化转变为多种挥发性化学成分。  相似文献   

10.
The effects of GA3, GA4 and GA9 and their methyl esters on darkspore germination and antheridium formation of the ferns Lygodiumjaponicum and Anemia phyllitidis were investigated. Althoughall induced both germination and antheridium formation in Lygodium,only the gibberellins induced these effects inAnemia. (Received August 28, 1986; Revision received November 14, 1986. )  相似文献   

11.
BELL  P. R. 《Annals of botany》1958,22(4):503-511
In fern prothalli growing in pure culture, a number of variationshave been observed in the rapidity of the germination of sporesand the subsequent growth of the prothalli. Although these variationshave not all been satisfactorily explained, experiments showthat it is possible to produce considerable changes in the germinationand growth of fern spores by introducing fungal contaminationand prothallial extracts into the media on which they are sown.These changes are considered in relation to variations in thedevelopmental morphology of spores in pure culture and it issuggested that indole-3-acetic acid may be the active substanceinvolved.  相似文献   

12.
Lygodium japonicum fern accumulates copper in the cell wall pectin   总被引:2,自引:0,他引:2  
The present work reports the results of a study on the growth kinetics and characterization of matrix polysaccharides in the cell walls of Lygodium japonicum prothallium grown in the presence of copper (Cu). When the prothallium was cultured in the media containing 0.2 mM or 0.4 mM CuSO(4), it showed a rapid accumulation of Cu with a maximum uptake of Cu measured in the cells up to 20 d of culture. The maximum rate of Cu uptake into the prothallium was greater for 0.4 mM Cu-treated cells (17.2 micromol g(-1) DW) than for 0.2 mM Cu-treated cells (3.2 micromol g(-1) DW). Cell walls were isolated from both untreated control and Cu-treated cells and then extracted sequentially with cyclohexane-trans-1,2-diaminetetra-acetate (CDTA), Na(2)CO(3), 1 M KOH, and 4 M KOH. The amount of pectin solubilized from 0.4 mM Cu-treated cell walls decreased to 53% of its level in the control, whereas the amount of hemicellulose solubilized from the Cu-treated cell walls represented 82% of that from control cell walls. When the polysaccharides were fractionated by anion-exchange chromatography into four carbohydrate components, considerable increases in fractions PI-3 and PII-3 eluted with 0.5 M NaCl were observed in CDTA-soluble (PI) and Na(2)CO(3)-soluble (PII) pectic polymers from Cu-treated cell walls. Fractions PI-3 and PII-3 were composed predominantly of uronic acid (more than 71% of total sugars). Approximately 66% of Cu within the cell walls was released from the 0.4 mM Cu-treated cells with the endo-pectate-lyase treatment, suggesting that most of the Cu that accumulated into the Lygodium prothallium is tightly bound to the homogalacturonan of the cell wall pectin.  相似文献   

13.
Several kinds of anthracyclines having γ-rhodofnycinone as the aglycone were isolated from Streptomyces cosmosus TMF 518, and their derivatives were prepared by chemical modification. We tested their differentiation inducing activity in Friend leukemia cells and clarified their structure activity relationship as follows: 1) The aglycone, γ-rhodomycinone, had no differentiation inducing activity but was cytotoxic; 2) the compounds with two sugar chains at both C7 and C10 had more potent differentiation inducing activity than those with only a sugar chain at C-10; 3) cosmomycin C was the most favorable candidate for an anticancer agent of all anthracyclines tested, because the value of ED50 (cytotoxicity)/ED50 (differentiation) was as high as 3000; and 4) the increase in differentiation inducing activity and cytotoxicity was not always in parallel.  相似文献   

14.
15.
(S)-(+)-2-Ammodecanoic acid was converted in 9 steps to (+)-8-hydroxyhexadecanoic acid, an endogenous inhibitor for spore germination m Lygodium japonicum, establishing its absolute configuration to be S.  相似文献   

16.
17.
Pattern of 3H-uridine incorporation into RNA of spores of Onocleasensibilis imbibed in complete darkness (non-germinating conditions)and induced to germinate in red light was followed by oligo-dTcellulose chromatography, gel electrophoresis coupled with fluorographyand autoradiography. In dark-imbibed spores, RNA synthesis wasinitiated about 24 h after sowing, with most of the label accumulatingin the high mol. wt. poly(A)RNA fraction. There was noincorporation of the label into poly(A) + RNA until 48 h aftersowing. In contrast, photo-induced spores began to synthesizeall fractions of RNA within 12 h after sowing and by 24 h, incorporationof 3H-uridine into RNA of irradiated spores was nearly 70-foldhigher than that into dark-imbibed spores. Protein synthesis,as monitored by 3H-arginine incorporation into the acid-insolublefraction and by autoradiography, was initiated in spores within1–2 h after sowing under both conditions. Autoradiographicexperiments also showed that the onset of protein synthesisin the cytoplasm of the germinating spore is independent ofthe transport of newly synthesized nuclear RNA. One-dimensionalsodium dodecyl sulphate-polyacrylamide gel electrophoresis of35S-methionine-labelled proteins revealed a good correspondencebetween proteins synthesized in a cell-free translation systemdirected by poly(A) +RNA of dormant spores and those synthesizedin vivo by dark-imbibed and photo-induced spores. These resultsindicate that stored mRNAs of O. sensibilis spores are functionallycompetent and provide templates for the synthesis of proteinsduring dark-imbibition and germination. Key words: Onoclea sensibilis, fern spore germination, gene expression, protein synthesis, sensitive fern, stored mRNA  相似文献   

18.
海金沙提取物体外抑菌性能研究   总被引:2,自引:1,他引:2  
用M/C和纸片法考查了海金沙提取物对藤黄球菌、枯草芽孢杆菌、金黄色葡萄球菌和乙型溶血性链球菌的抑菌性能。结果表明:海金沙对4种受试菌株都有抑菌活性;37℃时,醇提物对乙型溶血性链球菌的抑菌效果最好,最大抑菌圈为8.5mm;42℃时,对藤黄球菌、金黄色葡萄球菌和枯草杆菌的抑菌效果最好,最大抑菌圈分别为21、13.2和6.5mm。pH值为7.6时,海金沙醇提物在对藤黄球菌、金黄色葡萄球菌、枯草杆菌和乙型溶血性链球菌的最大抑菌圈分别为9.1、8.2、9mm和11.3mm。海金沙水提物和醇提物对藤黄球菌、乙型溶血性链球菌、枯草芽孢杆菌、金黄色葡萄球菌的最低抑菌质量分数分别为25%、12.5%、12.5%、25%和3.12%、1.56%、6.25%、3.12%.  相似文献   

19.
Archegonial differentiation in prothallia of Lygodium japonicum was inhibited when the filtrate of conditioned medium or the extracts of prothallia with organic solvents were added to the medium. By varying the timing of treatment with the methanol extract, archegonial differentiation was shown to start at least 4 days before microscopically detectable change. The inhibitory effect of methanol extract was nullified by transferring the treated plants to a fresh medium omitting the methanol extract, so that the archegonial formation became discernible 6 days after the transfer. The inhibitory activity was stable in both acidic and basic solutions at room temperature, and was partially lost by boiling at pH 3 or 11 for 30 min. The inhibitor, which could be retrieved from the filtrate and the methanol extract, was fractionated into the neutral ethyl acetate fraction, but was not found in the acidic ethyl acetate fraction and in the aqueous residue. At least two active zones were separated on thin layer chromatograms of the ethyl acetate extracts from the filtrate and the methanol extract, and the relative flow-rates of each active zone from these two sources were very similar. The evidence described above indicates that specific inhibitors of archegonial differentiation may be produced in the tissue of prothallia of Lygodium and eventually be secreted to the medium.  相似文献   

20.
Germination of Single Bacterial Spores   总被引:4,自引:1,他引:3       下载免费PDF全文
Changes in refractility and optical density occurring in individual spores of Bacillus cereus T and B. megaterium QM B1551 during germination were investigated by use of a Zeiss microscope photometer. The curves revealed that the germination process in single spores had two distinct phases; an initial rapid phase was followed by a second slower phase. Under the experimental condition employed, the first phase of germination of B. cereus spores lasted for approximately 75 +/- 15 sec, whereas the second phase lasted for 3 to 4.5 min. In B. megaterium spores, the first phase was observed to last for approximately 2 min and the second phase for more than 7 min. The duration of the second phase was dependent on conditions employed for germination. The kinetics of the first phase were strikingly similar under all conditions of physiological germination. Time-lapse phase-contrast microscopy of germinating spores also revealed the biphasic nature of germination. It was postulated that the first phase represents changes induced by an initial partial hydration of the spore and release into the medium of dipicolinic acid, whereas the second phase reflects degradation of the cortex and hydration of the core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号