共查询到20条相似文献,搜索用时 9 毫秒
1.
Jian-Cang Ma Xin Huang Ya-Wei Shen Chen Zheng Qing-Hua Su Jin-Kai Xu 《Bioscience, biotechnology, and biochemistry》2016,80(8):1470-1477
Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis. 相似文献
2.
Tomohiro Ogawa Yumiko Sekiya Katsutoshi Yoshizato Kazuo Ikeda 《Biochemical and biophysical research communications》2010,391(1):316-552
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through imperfect base pairing with the 3′ untranslated region (3′UTR) of target mRNA. We studied the regulation of alpha 1 (I) collagen (Col1A1) expression by miRNAs in human stellate cells, which are involved in liver fibrogenesis. Among miR-29b, -143, and -218, whose expressions were altered in response to transforming growth factor-β1 or interferon-α stimulation, miR-29b was the most effective suppressor of type I collagen at the mRNA and protein level via its direct binding to Col1A1 3′UTR. miR-29b also had an effect on SP1 expression. These results suggested that miR-29b is involved in the regulation of type I collagen expression by interferon-α in hepatic stellate cells. It is anticipated that miR-29b will be used for the regulation of stellate cell activation and lead to antifibrotic therapy. 相似文献
3.
Stimulation of pro-MMP-2 production and activation by native form of extracellular type I collagen in cultured hepatic stellate cells 总被引:2,自引:0,他引:2
Cultured hepatic stellate cells (HSCs) are known to change their morphology and function with respect to the production of extracellular matrices (ECMs) and matrix metalloproteinases (MMPs) in response to ECM components. We examined the regulatory role of the native form of type I collagen fibrils in pro-MMP-2 production and activation in cultured HSCs. Gelatin zymography of the conditioned media revealed that pro- and active form of MMP-2 was increased in the HSCs cultured on type I collagen gel but not on type I collagen-coated surface, gelatin-coated surface, type IV collagen-coated surface, or Matrigel, suggesting the importance of the native form of type I collagen fibrils in pro-MMP-2 production and activation. The induction of active MMP-2 by extracellular type I collagen was suppressed by the blocking antibody against integrin beta1 subunits, indicating the involvement of integrin signaling in pro-MMP-2 activation. RT-PCR analysis indicated that MMP-2, membrane type-1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA levels were elevated in HSCs cultured on type I collagen gel. The increased MT1-MMP proteins were localized on the cell surface of HSCs cultured on type I collagen gel. In contrast to the expression of MMP-2, HSCs showed a great decline in MMP-13 expression in HSCs cultured on type I collagen gel. These results indicate that the native fibrillar (polymerized) but not monomeric form of type I collagen induced pro-MMP-2 production and activation through MT1-MMP and TIMP-2 in cultured HSCs, suggesting an important role of HSCs in ECM remodeling in the hepatic perisinusoidal spaces. 相似文献
4.
5.
《Cytotherapy》2014,16(8):1132-1144
BackgroundIntravenous infusion of human amniotic epithelial cells (hAECs) has been shown to ameliorate hepatic fibrosis in murine models. Hepatic stellate cells (HSCs) are the principal collagen-secreting cells in the liver. The aim of this study was to investigate whether factors secreted by hAECs and present in hAEC-conditioned medium (CM) have anti-fibrotic effects on activated human HSCs.MethodsHuman AECs were isolated from the placenta and cultured. Human hepatic stellate cells were exposed to hAEC CM to determine potential anti-fibrotic effects.ResultsHSCs treated for 48 h with hAEC CM displayed a significant reduction in the expression of the myofibroblast markers α-smooth muscle actin and platelet-derived growth factor. Expression of the pro-fibrotic cytokine transforming growth factor-β1 (TGF-β1) and intracellular collagen were reduced by 45% and 46%, respectively. Human AEC CM induced HSC apoptosis in 11.8% of treated cells and reduced HSC proliferation. Soluble human leukocyte antigen–G1, a hAEC-derived factor, significantly decreased TGF-β1 and collagen production in activated HSCs, although the effect on collagen production was less than that of hAEC CM. The reduction in collagen and TGF-B1 could not be attributed to PGE2, relaxin, IL-10, TGF-B3, FasL or TRAIL.ConclusionsHuman AEC CM treatment suppresses markers of activation, proliferation and fibrosis in human HSCs as well as inducing apoptosis and reducing proliferation. Human AEC CM treatment may be effective in ameliorating liver fibrosis and warrants further study. 相似文献
6.
Kim KA Lim YS Kim KM Yoon JH Lee HS 《Prostaglandins, leukotrienes, and essential fatty acids》2005,73(5):361-367
15 deoxy-Delta(12,14)-prostaglandin(2) (15d-PGJ(2)) is known to inhibit the proliferation of hepatic stellate cells (HSCs), major cellular components that cause hepatic fibrosis, in vitro. It also induces oxidative stress, which results in hepatic myofibroblast death. On the other hand, oxidative stress generally induces HSC proliferation and collagen synthesis in vitro, and liver fibrogenesis in vivo. In this study, we evaluated the effects of 15d-PGJ(2) at various concentrations on the viability and collagen synthesis of HSCs. 15d-PGJ(2) increased intracellular reactive oxygen species (ROS), and reduced the viability of human HSCs at concentrations 5 microM by inducing apoptotic cell death. In addition, the antioxidants alpha-tocopherol and N-acetylcysteine (NAC) blocked 15d-PGJ(2)-induced HSC death. Collagen I synthesis was increased 1.5-fold by 0.5 microM 15d-PGJ(2) treatment, but was reduced to 30% of the control level by 10 microM 15d-PGJ(2), and NAC pretreatment prevented these changes in collagen production by 15d-PGJ(2). We conclude that 15d-PGJ(2) may either induce or prevent hepatic fibrogenesis depending on its concentration. 相似文献
7.
8.
Oxidative stress is involved in hepatic fibrogenesis. Activation of hepatic stellate cells (HSCs), the key effectors in hepatic fibrogenesis, is characterized by overproduction of extracellular matrix. Astragaloside IV, the active component of Radix Astragali, has antioxidant properties and antifibrotic potential in renal fibrosis. Little is known about the role of astragaloside IV in liver and its involvement in hepatic fibrosis. This study aims at evaluating the antifibrotic potential of astragaloside IV and characterizing involved signal transduction pathways in culture-activated HSCs. Our results show that astragaloside IV attenuates oxidative stress in culture-activated HSCs, as demonstrated by scavenging reactive oxygen species and reducing lipid peroxidation, and elevates the level of cellular glutathione by stimulating Nrf2gene expression. Depletion of cellular glutathione by buthionine sulfoximine or abrogation of p38 MAPK by SB-203580 evidently eliminates the inhibitory effects of astragaloside IV on genes relevant to HSC activation. These results demonstrate that astragaloside IV inhibits HSC activation by inhibiting generation of oxidative stress and associated p38 MAPK activation and provide novel insights into the mechanisms of astragaloside IV as an antifibrogenic candidate in the prevention and treatment of liver fibrosis. 相似文献
9.
Parekkadan B van Poll D Megeed Z Kobayashi N Tilles AW Berthiaume F Yarmush ML 《Biochemical and biophysical research communications》2007,363(2):247-252
Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-alpha abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis. 相似文献
10.
H.-Y. Seo B.-K. Jang Y.-A. Jung E.-J. Lee H.-S. Kim J.-H. Jeon J.-G. Kim I.-K. Lee M.-K. Kim K.-G. Park 《Biochemical and biophysical research communications》2014
Hepatic stellate cells (HSCs) are major players in liver fibrogenesis. Accumulating evidence shows that suppression of autophagy plays an important role in the development and progression of liver disease. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA) and choline, was recently shown to modulate autophagy. However, little is known about the effects of PLD1 on the production of type I collagen that characterizes liver fibrosis. Here, we examined whether PLD1 regulates type I collagen levels in HSCs through induction of autophagy. Adenovirus-mediated overexpression of PLD-1 (Ad-PLD1) reduced type I collagen levels in the activated human HSC lines, hTERT and LX2. Overexpression of PLD1 in HSCs led to induction of autophagy as demonstrated by increased LC3-II conversion and formation of LC3 puncta, and decreased p62 abundance. Moreover, inhibiting the induction of autophagy by treating cells with bafilomycin or a small interfering (si)RNA for ATG7 rescued Ad-PLD1-induced suppression of type I collagen accumulation in HSCs. The effects of PLD on type I collagen levels were not related to TGF-β/Smad signaling. Furthermore, treatment of cells with PA induced autophagy and inhibited type I collagen accumulation. The present study indicates that PLD1 plays a role in regulating type I collagen accumulation through induction of autophagy. 相似文献
11.
Reactive oxygen species (ROS) mediate the effects of leucine on translation regulation and type I collagen production in hepatic stellate cells 总被引:1,自引:0,他引:1
Pérez de Obanos MP López-Zabalza MJ Arriazu E Modol T Prieto J Herraiz MT Iraburu MJ 《Biochimica et biophysica acta》2007,1773(11):1681-1688
The amino acid leucine causes an increase of collagen alpha1(I) synthesis in hepatic stellate cells through the activation of translational regulatory mechanisms and PI3K/Akt/mTOR and ERK signaling pathways. The aim of the present study was to evaluate the role played by reactive oxygen species on these effects. Intracellular reactive oxygen species levels were increased in hepatic stellate cells incubated with leucine 5 mM at early time points, and this effect was abolished by pretreatment with the antioxidant glutathione. Preincubation with glutathione also prevented 4E-BP1, eIF4E and Mnk-1 phosphorylation induced by leucine, as well as enhancement of procollagen alpha1(I) protein levels. Inhibitors for MEK-1 (PD98059), PI3K (wortmannin) or mTOR (rapamycin) did not affect leucine-induced reactive oxygen species production. However, preincubation with glutathione prevented ERK, Akt and mTOR phosphorylation caused by treatment with leucine. The mitochondrial electron chain inhibitor rotenone and the NADPH oxidase inhibitor apocynin prevented reactive oxygen species production caused by leucine. Leucine also induced an increased phosphorylation of IR/IGF-R that was abolished by pretreatment with either rotenone or apocynin. Therefore, leucine exerts on hepatic stellate cells a prooxidant action through NADPH oxidase and mitochondrial Reactive oxygen species production and these effects mediate the activation of IR/IGF-IR and signaling pathways, finally leading to changes in translational regulation of collagen synthesis. 相似文献
12.
Inhibitory effect of soluble PDGF-beta receptor in culture-activated hepatic stellate cells 总被引:12,自引:0,他引:12
Borkham-Kamphorst E Stoll D Gressner AM Weiskirchen R 《Biochemical and biophysical research communications》2004,317(2):451-462
Following liver injury, hepatic stellate cells undergo phenotypic transformation with acquisition of myofibroblast-like features, characterized by increased cell proliferation, motility, contractility, and extracellular matrix production. Activation of hepatic stellate cells is regulated by several cytokines and growth factors, including platelet-derived growth factor B-chain, a potent mitogen for HSC, overexpressed during hepatic fibrogenesis. This pleiotropic mediator exerts cellular effects by binding to specific receptors, inducing receptor dimerization and tyrosine-autophosphorylation. Activated receptor phosphotyrosines recruit signal transduction molecules, initiating various signaling pathways. We produced a soluble PDGFbeta-receptor (sPDGFRbeta) consisting of an extracellular domain connected to the IgG-Fc part of human immunoglobulin heavy chain. This soluble, chimeric receptor inhibits PDGF signaling and PDGF-induced proliferation in culture-activated hepatic stellate cells. Furthermore, sPDGFR decreased collagen type I (alphaI) mRNA expression and inhibits autocrine-looping in PDGF-BB mRNA production. In summary, sPDGFRbeta clearly shows effective inhibitory properties in early HSC activation, suggesting potential therapeutic impact for anti-PDGF intervention in liver fibrogenesis. 相似文献
13.
Ohguchi K Banno Y Akao Y Nozawa Y 《Biochemical and biophysical research communications》2006,348(4):1398-1402
In the current study, the involvement of phospholipase D (PLD) in the regulation of collagen type I production was examined using human dermal fibroblasts. Procollagen I production in the cells overexpressing PLD1, but not PLD2, was found to be increased compared with those in the vector control cells. To investigate the role of PLD1, we examined the effect of knockdown of endogenous PLD1 by small interference RNA (siRNA) on collagen production. The reduction of expression levels of PLD1 by siRNA transfection was accompanied by diminution of procollagen biosynthesis and also ribosomal S6 kinase 1 (S6K1) phosphorylation. The activity of mammalian target of rapamycin (mTOR) is essential for phosphorylation of S6K1 and the treatment of dermal fibroblasts with rapamycin, a potent inhibitor of mTOR abolished procollagen I production. These results suggest that PLD1 plays a crucial role in collagen type I production through mTOR signaling in human dermal fibroblast. 相似文献
14.
Marianna D A Ga?a Xiaoying Zhou Razao Issa Kishanee Kiriella John P Iredale R Christopher Benyon 《Matrix biology》2003,22(3):229-239
During liver fibrosis hepatic stellate cells become activated, transforming into proliferative myofibroblastic cells expressing type I collagen and alpha-smooth muscle actin. They become the major producers of the fibrotic neomatrix in injured liver. This study examines if activated stellate cells are a committed phenotype, or whether they can become deactivated by extracellular matrix. Stellate cells isolated from normal rat liver proliferated and expressed mRNA for activation markers, alpha-smooth muscle actin, type I procollagen and tissue inhibitor of metalloproteinases-1 following 5-7 day culture on plastic, but culture on Matrigel suppressed proliferation and mRNA expression. Activated stellate cells were recovered from plastic by trypsinisation and replated onto plastic, type I collagen films or Matrigel. Cells replated on plastic and type I collagen films proliferated and remained morphologically myofibroblastic, expressing alpha-smooth muscle actin and type I procollagen. However, activated cells replated on Matrigel showed <30% of the proliferative rate of these cells, and this was associated with reduced cellular expression of proliferating cell nuclear antigen and phosphorylation of mitogen-activated protein kinase in response to serum. Activated HSC replated on Matrigel for 3-7 days progressively reduced their expression of mRNA for type I procollagen and alpha-smooth muscle actin and both became undetectable after 7 days. We conclude that basement membrane-like matrix induces deactivation of stellate cells. Deactivation represents an important potential mechanism mediating recovery from liver fibrosis in vivo where type I collagen is removed from the liver and stellate cells might re-acquire contact with their normal basement membrane-like pericellular matrix. 相似文献
15.
16.
17.
The activated first component of human complement, C1-s, was shown to cleave type I and II collagen and gelatin. The proteolytic activity was heat labile and was inhibited by a monoclonal antibody (M241) which recognized light chain of active human C1-s or by a serine protease inhibitor, DFP, but not by a chelating agent. 相似文献
18.
OBJECTIVE: To investigate the contribution of angiotensin II towards the process of hepatic fibrosis that is largely due to hepatic stellate cell growth. METHODS: Adult rat hepatic stellate cells were cultured and checked for the expression of angiotensin II receptor 1a (AT(1a)) mRNA by RT-PCR and sequence analysis. The effects of angiotensin II were observed on stimulation of hepatic stellate cell growth detected by MTT assays, (3)H-thymidine incorporation and cell count, and collagen synthesis by (3)H-proline incorporation. RESULTS: We demonstrated that cultured adult rat hepatic stellate cells expressed AT(1a) mRNA, and angiotensin II in a concentration-dependent manner stimulated hepatic stellate cell growth at a concentration of 10(-7)-10(-9) mol/l and collagen synthesis at a concentration of 10(-6)-10(-10) mol/l. Also, AT(1a) receptor antagonist, in a concentration-dependent manner, blocked the cell growth from 10(-6) to 10(-8) mol/l and collagen synthesis from 10(-6) to 10(-9) mol/l. CONCLUSIONS: The results provided direct evidence that AT(1a) mRNA was expressed in rat hepatic stellate cells and angiotensin II could contribute towards the development of hepatic fibrosis via AT(1a) receptor. 相似文献
19.
20.
Falconi M Teti G Zago M Pelotti S Breschi L Mazzotti G 《Cell biology and toxicology》2007,23(5):313-322
The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized adhesive systems
due to degradation processes or the incomplete polymerization of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the
major components released from dental adhesives. Cytotoxic effects due to high concentrations of HEMA have already been investigated,
but the influence of minor toxic concentrations on specific proteins such as type I collagen has not been studied in depth.
The objective of this project was to study the effect of minor toxic concentrations of HEMA on human gingival fibroblasts
(HGFs), investigating modification in cell morphology, cell viability, and the influence on type I collagen protein. Primary
lines of human gingival fibroblasts were exposed to 3 mmol/L HEMA for different periods of time (24 h, 72 h, 96 h). The cell
vitality was determined by MTT assay, and high-resolution scanning electron microscopy analysis was performed to evaluate
differences in cell morphology before and after treatment. The presence and localization of type I collagen was determined
by immunofluorescence in HGFs treated with HEMA for the same period of time. The vitality of the cells decreased after 72
h of exposure. The HGFs grown in monolayer and observed by field emission in-lens scanning electron microscopy demonstrated
a preserved surface morphology after 24 h of treatment, while they showed an altered morphology after 96 h of treatment. Immunofluorescence
demonstrated a reduction of type I collagen due to HEMA exposure after 96 h. From these results, we conclude that low concentrations
of HEMA can significantly alter the morphology of human gingival fibroblasts and interfere with the presence of type I collagen
protein. 相似文献