首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the truncated 7-37 glucagon-like peptide 1 (TGLP-1), a naturally occurring porcine intestinal peptide, and other members of the glucagon family, including pancreatic glucagon (G-29), GLP-1 and GLP-2 for their ability to activate the cAMP generating system in rat gastric glands and HGT-1 human gastric cancer cells. In rat fundic glands, TGLP-1 was about 100 times more potent (EC50 = 2.8 X 10(-9) M) than GLP-1 of G-29, and 10 times more potent than G-29 in the HGT-1 cell line. Our results support the notion that TGLP-1 plays a direct role in the regulation of acid secretion in rat and human gastric mucosa.  相似文献   

2.
Glucagon-like peptide-1-(7---36) amide (GLP-1) is a potent incretin hormone secreted from distal gut. It stimulates basal and glucose-induced insulin secretion and proinsulin gene expression. The present study tested the hypothesis that GLP-1 may modulate insulin receptor binding. RINm5F rat insulinoma cells were incubated with GLP-1 (0.01-100 nM) for different periods (1 min-24 h). Insulin receptor binding was assessed by competitive ligand binding studies. In addition, we investigated the effect of GLP-1 on insulin receptor binding on monocytes isolated from type 1 and type 2 diabetes patients and healthy volunteers. In RINm5F cells, GLP-1 increased the capacity and affinity of insulin binding in a time- and concentration-dependent manner. The GLP-1 receptor agonist exendin-4 showed similar effects, whereas the receptor antagonist exendin-(9---39) amide inhibited the GLP-1-induced increase in insulin receptor binding. The GLP-1 effect was potentiated by the adenylyl cyclase activator forskolin and the stable cAMP analog Sp-5, 6-dichloro-1-beta-D-ribofuranosyl-benzimidazole-3', 5'-monophosphorothioate but was antagonized by the intracellular Ca(2+) chelator 1,2-bis(0-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM. Glucagon, gastric inhibitory peptide (GIP), and GIP-(1---30) did not affect insulin binding. In isolated monocytes, 24 h incubation with 100 nM GLP-1 significantly (P<0.05) increased the diminished number of high-capacity/low-affinity insulin binding sites per cell in type 1 diabetics (9,000+/-3,200 vs. 18,500+/-3,600) and in type 2 diabetics (15,700+/-2,100 vs. 28,900+/-1,800) compared with nondiabetic control subjects (25,100+/-2,700 vs. 26,200+/-4,200). Based on our previous experiments in IEC-6 cells and IM-9 lymphoblasts indicating that the low-affinity/high-capacity insulin binding sites may be more specific for proinsulin (Jehle, PM, Fussgaenger RD, Angelus NK, Jungwirth RJ, Saile B, and Lutz MP. Am J Physiol Endocrinol Metab 276: E262-E268, 1999 and Jehle, PM, Lutz MP, and Fussgaenger RD. Diabetologia 39: 421-432, 1996), we further investigated the effect of GLP-1 on proinsulin binding in RINm5F cells and monocytes. In both cell types, GLP-1 induced a significant increase in proinsulin binding. We conclude that, in RINm5F cells and in isolated human monocytes, GLP-1 specifically increases the number of high-capacity insulin binding sites that may be functional proinsulin receptors.  相似文献   

3.
Effect of glucagon-like peptide-1 on insulin secretion   总被引:4,自引:0,他引:4  
The insulinotropic actions of two forms of glucagon-like peptide 1 (GLP-1) containing 31 and 37 amino acid residues on perfused rat pancreas were compared with that of gastric inhibitory polypeptide (GIP), hitherto the most potent intestinal insulinotropic polypeptide known. The smaller form, C-terminally amidated GLP-1-(7-36), strongly enhanced insulin secretion stimulated by 11.1 mM D-glucose at a concentration as low as 0.1 nM. Comparable effects of GIP and GLP-1-(1-37) on insulin secretion were observed at concentrations of 1.0 nM and 10.0 nM, respectively. At the doses tested, neither GLP-1s nor GIP had any effect on insulin secretion induced by 3.3 mM D-glucose. At a concentration of 1.0 nM, GLP-1-(7-36 amide) also enhanced insulin secretion induced by 5 mM L-arginine whereas at concentrations of up to 10.0 nM, GLP-1-(1-37) did not. The results show that the smaller form of GLP-1 is more strongly insulinotropic than GIP. These findings suggest that the smaller GLP-1 may have a physiologically more important role as a modulator of insulin release.  相似文献   

4.
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that stimulates insulin secretion and decreases glucagon release. It has been hypothesized that GLP-1 also reduces glycemia independent of its effect on islet hormones. Based on preliminary evidence that GLP-1 has independent actions on endogenous glucose production, we undertook a series of experiments that were optimized to address this question. The effect of GLP-1 on glucose appearance (Ra) and glucose disposal (Rd) was measured in eight men during a pancreatic clamp that was performed by infusing octreotide to suppress secretion of islet hormones, while insulin and glucagon were infused at rates adjusted to maintain blood glucose near fasting levels. After stabilization of plasma glucose and equilibration of [3H]glucose tracer, GLP-1 was given intravenously for 60 min. Concentrations of insulin, C-peptide, and glucagon were similar before and during the GLP-1 infusion (115 +/- 14 vs. 113 +/- 11 pM; 0.153 +/- 0.029 vs. 0.156 +/- 0.026 nM; and 64.7 +/- 11.5 vs. 65.8 +/- 13.8 ng/l, respectively). With the initiation of GLP-1, plasma glucose decreased in all eight subjects from steady-state levels of 4.8 +/- 0.2 to a nadir of 4.1 +/- 0.2 mM. This decrease in plasma glucose was accounted for by a significant 17% decrease in Ra, from 22.6 +/- 2.8 to 19.1 +/- 2.8 micromol. kg-1. min-1 (P < 0.04), with no significant change in Rd. These findings indicate that, under fasting conditions, GLP-1 decreases endogenous glucose production independent of its actions on islet hormone secretion.  相似文献   

5.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

6.
Ghrelin release in man depends on the macronutrient composition of the test meal. The mechanisms contributing to the differential regulation are largely unknown. To elucidate their potential role, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), insulin, gastrin and somatostatin were examined on isolated rat stomach ghrelin secretion, which offers the advantage of avoiding systemic interactions. Basal ghrelin secretion was in a range that did not permit to consistently evaluate inhibiting effects. Therefore, the effect of gastrointestinal hormones and insulin was analyzed during vagal prestimulation. GLP-1(7-36)amide 10(-8) and 10(-7) M decreased ghrelin secretion significantly. In contrast, GIP 10(-8) and 10(-7) M augmented not only prestimulated, but also basal ghrelin secretion (p<0.05). Insulin reduced ghrelin at 10(-10), 10(-8) and 10(-6) M (p<0.05). Both gastrin 10(-8) M and somatostatin 10(-6) M also significantly inhibited ghrelin secretion. These data demonstrate that GLP-1(7-36)amide, insulin, gastrin and somatostatin are potential candidates to contribute to the postprandially observed inhibition of ghrelin secretion with insulin being the most effective inhibitor in this isolated stomach model. GIP, on the other hand, could attenuate the postprandial decrease. Because protein-rich meals do not effectively stimulate GIP release, other as yet unknown intestinal factors must be responsible for protein-induced stimulation of ghrelin release.  相似文献   

7.
The lipolytic effect of GLP-1(1-36)-amide, GLP-1(7-36) amide and GLP-2 [proglucagon(126-159)] has been studied in isolated rat adipocytes. Glycerol release and cyclic AMP content were measured after incubation of adipocytes with GLPs and results have been compared with those obtained in the presence of glucagon. GLP-1(7-36)-amide and GLP-1(1-36)-amide at 10(-8), 10(-7) and 10(-6) M concentrations activated glycerol release, the truncated peptide having a more potent effect. On the other hand, GLP-2 had no effect on glycerol release. Also, it has been found that 10(-6) M GLP-1(7-36)-amide increases cyclic AMP content in adipocytes and does not compete with glucagon binding. These results demonstrate that GLP-1(7-36)-amide has a lipolytic effect on isolated rat adipocytes through different receptors than glucagon.  相似文献   

8.
Secretion of the gut hormone glucagon-like peptide-1 (GLP-1) is stimulated by meal ingestion. The response is rapid, suggesting a stimulatory pathway elicited from the upper gastrointestinal area. In pigs, we have been unable to demonstrate a neural stimulatory pathway, but GLP-1 secretion is regulated by local somatostatin secretion. In search for an endocrine pathway, we studied the effect of a range of concentrations of cholecystokinin octapeptide (26-33) (CCK 8), gastric inhibitory peptide 1-42 (GIP), secretin, motilin, calcitonin gene-related peptide (CGRP), and the modified amino acid, 5-hydroxytryptamine (serotonin, 5-HT) on GLP-1 and somatostatin release from isolated perfused segments of porcine ileum.GLP-1 secretion was stimulated by 1 nM CCK 8 and 10 nM GIP, but suppressed by 1 nM motilin and 1 microM 5-HT. Secretin and CGRP had no effect. Somatostatin secretion was stimulated by CCK 8 at 1 and 10 nM, by GIP at 1 and 10 nM and by 10 nM CGRP. Secretin, 5-HT and motilin had no effect on somatostatin secretion.We conclude that CCK 8 and GIP 1-42 stimulated GLP-1 secretion, but only in concentrations greatly exceeding normal postprandial concentrations. Thus, we find it unlikely that endocrine agents from the duodenum regulate GLP-1 secretion in pigs.  相似文献   

9.
The incretin glucagon-like peptide-1 (GLP-1), which is used to treat diabetes mellitus, delays gastric emptying by inhibiting vagal activity. GLP-1 also increases fasting and postprandial gastric volume in humans. On the basis of animal studies, we hypothesized that nitric oxide mediates the effects of GLP-1 on gastric volumes. To assess the effects of nitrergic blockade on GLP-1-induced gastric accommodation in humans, in this double-blind study, 31 healthy volunteers were randomized to placebo (i.e., saline), GLP-1, or the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate (L-NMMA; 4 mg.kg(-1) x h(-1)) alone or with GLP-1. Thereafter, 16 additional subjects were randomized to GLP-1 alone or together with a higher dose of L-NMMA (10 mg/kg bolus plus 8 mg.kg(-1).h(-1) infusion). Gastric volumes (fasting pre- and postdrug, postprandial postdrug) were measured by (99m)Tc-single-photon-emission computed tomography imaging. GLP-1 increased (P = 0.04) fasting gastric volume by 83 +/- 16 ml (vs. 17 +/- 11 ml for placebo) and augmented (P < or = 0.01) postprandial accommodation by 688 +/- 165 ml (vs. 542 +/- 29 ml for placebo). L-NMMA (low dose) alone did not affect fasting or postprandial gastric volume. L-NMMA (low dose) did not attenuate the effect of GLP-1 on gastric volumes. In contrast, L-NMMA (high dose) did not affect fasting volume but blunted GLP-1-mediated postprandial accommodation (postprandial change = 494 +/- 37 ml, P < or = 0.01 vs. GLP-1 alone). These data are consistent with the hypothesis that nitric oxide partly mediates the effects of GLP-1 on postprandial but not fasting gastric volumes in humans.  相似文献   

10.
Glucagon-like peptide-1 (7–36) amide as a novel neuropeptide   总被引:2,自引:0,他引:2  
Although earlier studies indicated that GLP-1 (7-36) amide was an intestinal peptide with a potent effect on glucose-dependent insulin secretion, later on it was found that several biological effects of this peptide occur in the brain, rather than in peripheral tissues. Thus, proglucagon is expressed in pancreas, intestine, and brain, but post translational processing of the precursor yields different products in these organs, glucagon-like peptide-1 (7-36) amide being one of the forms produced in the brain. Also, GLP-1 receptor cDNA from human and rat brains has been cloned and sequenced, and the deduced amino acid sequences are the same as those found in pancreatic islets. Through these receptors, GLP-1 (7-36) amide from gut or brain sources induces its effects on the release of neurotransmitters from selective brain nuclei, the inhibition of gastric secretion and motility, the regulation of food and drink intake, thermoregulation, and arterial blood pressure. Central administration (icv) of GLP-1 (7-36) amide produces a marked reduction in food and water intake, and the colocalization of the GLP-1 receptor, GLUT-2, and glucokinase mRNAs in hypothalamic neurons involved in glucose sensing suggests that these cells may be involved in the transduction of signals needed to produce a state of fullness. In addition, GLP-1 (7-36) amide inhibits gastric acid secretion and gastric emptying, but these effects are not found in vagotomized subjects, suggesting a centrally mediated effect. Similar results have been found with the action of this peptide on arterial blood pressure and heart rate in rats. Synthesis of GLP-1 (7-36) amide and its own receptors in the brain together with its abovementioned central physiological effects imply that this peptide may be considered a neuropeptide. Also, the presence of GLP-1 (7-36) amide in the synaptosome fraction and its calcium-dependent release by potassium stimulation, suggest that the peptide may act as a neurotransmitter although further electrophysiological and ultrastructural studies are needed to confirm this possibility.  相似文献   

11.
Glucagon-like peptide-1 (GLP-1, 7-36) is capable of restoring normal glucose tolerance in aging, glucose-intolerant Wistar rats and is a potent causal factor in differentiation of human islet duodenal homeobox-1-expressing cells into insulin-releasing beta cells. Here we report stable isotope-based dynamic metabolic profiles of rat pancreatic epithelial (ARIP) and human ductal tumor (PANC-1) cells responding to 10 nM GLP-1 treatment in 48 h cultures. Macromolecule synthesis patterns and substrate flow measurements using gas chromatography/mass spectrometry (MS) and the stable [1,2-13C2]glucose isotope as the tracer showed that GLP-1 induced a significant 20% and 60% increase in de novo fatty acid palmitate synthesis in ARIP and PANC-1 cells, respectively, and it also induced a significant increase in palmitate chain elongation into stearate utilizing glucose as the primary substrate. Distribution of 13C in other metabolites indicated no changes in the rates of nucleic acid ribose synthesis, glutamate oxidation, or lactate production. Tandem high-performance liquid chromatography-ion trap MS analysis of the culture media demonstrated mass insulin secretion by GLP-1-treated tumor cells. Metabolic profile changes in response to GLP-1-induced cell differentiation include selective increases in de novo fatty acid synthesis from glucose and consequent chain elongation, allowing increased membrane formation and greater insulin availability and release.  相似文献   

12.
GLP-1 stimulates insulin secretion, suppresses glucagon secretion, delays gastric emptying, and inhibits small bowel motility, all actions contributing to the anti-diabetogenic peptide effect. Endothelial dysfunction is strongly associated with insulin resistance and type 2 diabetes mellitus and may cause the angiopathy typifying this debilitating disease. Therefore, interventions affecting both endothelial dysfunction and insulin resistance may prove useful in improving survival in type 2 diabetes patients. We investigated GLP-1's effect on endothelial function and insulin sensitivity (S(I)) in two groups: 1) 12 type 2 diabetes patients with stable coronary artery disease and 2) 10 healthy subjects with normal endothelial function and S(I). Subjects underwent infusion of recombinant GLP-1 or saline in a random crossover study. Endothelial function was measured by postischemic FMD of brachial artery, using ultrasonography. S(I) [in (10(-4) dl.kg(-1).min(-1))/(muU/ml)] was measured by hyperinsulinemic isoglycemic clamp technique. In type 2 diabetic subjects, GLP-1 infusion significantly increased relative changes in brachial artery diameter from baseline FMD(%) (3.1 +/- 0.6 vs. 6.6 +/- 1.0%, P < 0.05), with no significant effects on S(I) (4.5 +/- 0.8 vs. 5.2 +/- 0.9, P = NS). In healthy subjects, GLP-1 infusion affected neither FMD(%) (11.9 +/- 0.9 vs. 10.3 +/- 1.0%, P = NS) nor S(I) (14.8 +/- 1.8 vs. 11.6 +/- 2.0, P = NS). We conclude that GLP-1 improves endothelial dysfunction but not insulin resistance in type 2 diabetic patients with coronary heart disease. This beneficial vascular effect of GLP-1 adds yet another salutary property of the peptide useful in diabetes treatment.  相似文献   

13.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

14.
AIMS/HYPOTHESIS: Since insulin secretion in response to exogenous gastric inhibitory polypeptide (GIP) is diminished not only in patients with type 2 diabetes, but also in their normal glucose-tolerant first-degree relatives, it was the aim to investigate the integrity of the entero-insular axis in such subjects. METHODS: Sixteen first-degree relatives of patients with type 2 diabetes (4 male, 12 female, age 50+/-12 years, BMI 26.1+/-3.8 kg/m(2)) and 10 matched healthy controls (negative family history, 6 male, 4 female, 45+/-13 years, 26.1+/-4.2 kg/m(2)) were examined with an oral glucose load (75 g) and an "isoglycaemic" intravenous glucose infusion. Blood was drawn over 240 min for plasma glucose (glucose oxidase), insulin, C-peptide, GIP and glucagon-like peptide 1 (GLP-1; specific immunoassays). RESULTS: The pattern of glucose concentrations could precisely be copied by the intravenous glucose infusion (p=0.99). Insulin secretion was stimulated significantly more by oral as compared to intravenous glucose in both groups (p<0.0001). The percent contribution of the incretin effect was similar in both groups (C-peptide: 61.9+/-5.4 vs. 64.4+/-5.8%; p=0.77; insulin: 74.2+/-3.3 vs. 75.8+/-4.9; p=0.97; in first-degree relatives and controls, respectively). The individual responses of GIP and GLP-1 secretion were significantly correlated with each other (p=0.0003). The individual secretion of both GIP and GLP-1 was identified as a strong predictor of the integrated incremental insulin secretory responses as well as of the incretin effect. CONCLUSION/INTERPRETATION: Despite a lower insulin secretory response to exogenous GIP, incretin effects are similar in first-degree relatives of patients with type 2 diabetes and control subjects. This may be the result of a B cell secretory defect that affects stimulation by oral and intravenous glucose to a similar degree. Nevertheless, endogenous secretion of GIP and GLP-1 is a major determinant of insulin secretion after oral glucose.  相似文献   

15.
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are secreted in parallel to the circulation after a meal. Intravenous (IV) GLP-1 has an inhibitory effect on gastric emptying, hunger and food intake in man. In rodents, central administration of GLP-2 increases satiety similar to GLP-1. The aim of the present study was to assess the effect of IV administered GLP-2 on gastric emptying and feelings of hunger in human volunteers. In eight (five men) healthy subjects (age 31.1+/-2.9 years and BMI 24.1+/-1.0 kg m(-2)), scintigraphic solid gastric emptying, hunger ratings (VAS) and plasma concentrations of GLP-2 were studied during infusion of saline or GLP-2 (0.75 and 2.25 pmol kg(-1) min(-1)) for a total of 180 min. Concentrations of GLP-2 were elevated to a maximum of 50 and 110 pmol l(-1) for 0.75 and 2.25 pmol kg(-1) min(-1) infusion of GLP-2, respectively. There was no effect of GLP-2 on either the lag phase (29.5+/-4.4, 26.0+/-5.2 and 21.2+/-3.6 min for saline, GLP-2 0.75 or 2.25 pmol kg(-1) min(-1), respectively) or the half emptying time (84.5+/-6.1, 89.5+/-17.8 and 85.0+/-7.0 min for saline, GLP-2 0.75 or 2.25 pmol kg(-1) min(-1), respectively). The change in hunger rating after the meal to 180 min was also unaffected by infusion of GLP-2. GLP-2 does not seem to mediate the ileal brake mechanism.  相似文献   

16.
Gastrin regulates ECL cell histamine release and is a critical determinant of acid secretion. ECL cell secretion and proliferation is inhibited by gastrin antagonists and somatostatin but little is known about the role of dopamine agonists in this process. Since the ECL cell exhibits all three classes of receptor we evaluated and compared the effects of the gastrin receptor antagonist, (YF476), lanreotide (SST agonist) and novel dopaminergic agents (BIM53061 and BIM27A760) on ECL cell histamine secretion and proliferation. Highly enriched (>98%) ECL cell preparations prepared from rat gastric mucosa using a FACS approach were studied. Real-time PCR confirmed presence of the CCK2, SS2 and SS5 and D1 receptors on ECL cells. YF476 inhibited histamine secretion and proliferation with IC(50)s of 1.25 nM and 1.3 x 10(-11) M respectively, values 10-1000x more potent than L365,260. Lanreotide inhibited secretion and proliferation (2.2 nM, 1.9 x 10(-10) M) and increased YF476-inhibited proliferation a further 5-fold. The dopamine agonist, BIM53061, inhibited gastrin-mediated ECL cell secretion and proliferation (17 nM, 6 x 10(-10) M) as did the novel dopamine/somatostatin chimera BIM23A760 (22 nM, 4.9 x 10(-10) M). Our studies demonstrate that the gastrin receptor antagonist, YF476, is the most potent inhibitor of ECL cell histamine secretion and proliferation. Lanreotide, a dopamine agonist and a dopamine/somatostatin chimera inhibited ECL cell function but were 10-1000x less potent than YF476. Agents that selectively target the CCK2 receptor may provide alternative therapeutic strategies for gastrin-mediated gastrointestinal cell secretion and proliferation such as evident in the hypergastrinemic gastric carcinoids associated with low acid states.  相似文献   

17.
Gastric inhibitory polypeptide (GIP) strongly stimulates insulin secretion in the presence of glucose and also stimulates somatostatin release from gastric mucosa. It was reported recently that both stimulatory activities can be dissociated by removing the C-terminal 12 amino acid residues. Since insulin and somatostatin are involved in regulation of exocrine pancreatic and gastric secretion in rats, we compared the inhibitory effects of pGIP and the pGIP(1-30)NH2 fragment on pancreatic amylase and gastric acid secretion. pGIP(1-30)NH2 displayed full activity on inhibition of bombesin (BN)-stimulated amylase release relative to GIP itself, but was about 10-fold less potent in inhibiting gastric acid secretion. These results suggest that the receptors involved in these two events have quite different ligand binding requirements and that more specific analogues of GIP can be designed which should be of value in elucidating the physiological roles of this hormone.  相似文献   

18.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

19.
Medullary sites of action for bombesin-induced inhibition of gastric acid secretion were investigated in urethane-anesthetized rats with gastric fistula. Unilateral microinjection of bombesin or vehicle into the dorsal vagal complex was performed using a glass micropipet and pressure ejection of 100 nl volume; gastric acid output was measured every 10 min by flushing the stomach. Microinjection of vehicle into the dorsal vagal complex did not alter gastric acid secretion (1.9 +/- mumol/10) from preinjection levels (2.9 +/- 0.8 mumol/10 min). Microinjection of the stable thyrotropin-releasing hormone (TRH) analog, RX 77368, at a 77 pmol dose into the dorsal vagal complex stimulated gastric acid secretion for 100 min with a peak response at 40 min (24.1 +/- 3.2 mumol/10 min). Concomitant microinjection of RX 77368 (77 pmol) with bombesin (0.6-6.2 pmol) into the dorsal vagal complex dose dependently inhibited by 35-86% the gastric acid response to the TRH analog. Bombesin (6.2 pmol) microinjected into the dorsal vagal complex inhibited by 17% pentagastrin infusion-induced stimulation of gastric acid secretion (13.2 +/- 0.8 mumol/10 min) whereas intracisternal injection induced a 69% inhibition of the pentagastrin response. These results demonstrate that the dorsal motor complex is a sensitive site of action for bombesin-induced inhibition of vagally stimulated gastric secretion. However, other medullary sites must be involved in mediating the inhibitory effect of intracisternal bombesin on pentagastrin-stimulated gastric acid secretion.  相似文献   

20.
By applying a newly developed ELISA technique for determining biologically active intact glucagon-like peptide [GLP-1, GLP-1-(7-36)amide] in mouse, plasma baseline GLP-1 in normal NMRI mice was found to be normally distributed (4.5 +/- 0.3 pmol/l; n = 72). In anesthetized mice, gastric glucose (50 or 150 mg) increased plasma GLP-1 levels two- to threefold (P < 0.01). The simultaneous increase in plasma insulin correlated to the 10-min GLP-1 levels (r = 0.36, P < 0.001; n = 12). C57BL/6J mice deleted of the gastrin-releasing peptide (GRP) receptor by genetic targeting had impaired glucose tolerance (P = 0.030) and reduced early (10 min) insulin response (P = 0.044) to gastric glucose compared with wild-type controls. Also, the GLP-1 response to gastric glucose was significantly lower in the GRP receptor-deleted mice than in the controls (P = 0.045). In conclusion, this study has shown that 1) plasma levels of intact GLP-1 increase dose dependently on gastric glucose challenge in correlation with increased insulin levels in mice, and 2) intact GRP receptors are required for normal GLP-1 and insulin responses and glucose tolerance after gastric glucose in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号