首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Establishment of axon and dendrite polarity, migration to a desired location in the developing brain, and establishment of proper synaptic connections are essential processes during neuronal development. The cellular and molecular mechanisms that govern these processes are under intensive investigation. The function of the centrosome in neuronal development has been examined and discussed in few recent studies that underscore the fundamental role of the centrosome in brain development. Clusters of emerging studies have shown that centrosome positioning tightly regulates neuronal development, leading to the segregation of cell factors, directed neurite differentiation, neuronal migration, and synaptic integration. Furthermore, cilia, that arise from the axoneme, a modified centriole, are emerging as new regulatory modules in neuronal development in conjunction with the centrosome. In this review, we focus on summarizing and discussing recent studies on centrosome positioning during neuronal development and also highlight recent findings on the role of cilia in brain development. We further discuss shared molecular signaling pathways that might regulate both centrosome and cilia associated signaling in neuronal development. Furthermore, molecular determinants such as DISC1 and LKB1 have been recently demonstrated to be crucial regulators of various aspects of neuronal development. Strikingly, these determinants might exert their function, at least in part, via the regulation of centrosome and cilia associated signaling and serve as a link between these two signaling centers. We thus include an overview of these molecular determinants.  相似文献   

2.
Nearly every cell type in the mammalian body projects from its cell surface a primary cilium that provides important sensory and signaling functions. Defects in the formation or function of primary cilia have been implicated in the pathogenesis of many human developmental disorders and diseases, collectively termed ciliopathies. Most neurons in the brain possess cilia that are enriched for signaling proteins such as G protein-coupled receptors and adenylyl cyclase type 3, suggesting neuronal cilia sense neuromodulators in the brain and contribute to non-synaptic signaling. Indeed, disruption of neuronal cilia or loss of neuronal ciliary signaling proteins is associated with obesity and learning and memory deficits. As the functions of primary cilia are defined by the signaling proteins that localize to the ciliary compartment, identifying the complement of signaling proteins in cilia can provide important insights into their physiological roles. Here we report for the first time that different GPCRs can colocalize within the same cilium. Specifically, we found the ciliary GPCRs, melanin-concentrating hormone receptor 1 (Mchr1) and somatostatin receptor 3 (Sstr3) colocalizing within cilia in multiple mouse brain regions. In addition, we have evidence suggesting Mchr1 and Sstr3 form heteromers. As GPCR heteromerization can affect ligand binding properties as well as downstream signaling, our findings add an additional layer of complexity to neuronal ciliary signaling.  相似文献   

3.
In the rodent brain, certain G protein-coupled receptors and adenylyl cyclase type 3 are known to localize to the neuronal primary cilium, a primitive sensory organelle protruding singly from almost all neurons. A recent chemical screening study demonstrated that many compounds targeting dopamine receptors regulate the assembly of Chlamydomonas reinhardtii flagella, structures which are analogous to vertebrate cilia. Here we investigated the effects of dopaminergic inputs loss on the architecture of neuronal primary cilia in the rodent striatum, a brain region that receives major dopaminergic projections from the midbrain. We first analyzed the lengths of neuronal cilia in the dorsolateral striatum of hemi-parkinsonian rats with unilateral lesions of the nigrostriatal dopamine pathway. In these rats, the striatal neuronal cilia were significantly longer on the lesioned side than on the non-lesioned side. In mice, the repeated injection of reserpine, a dopamine-depleting agent, elongated neuronal cilia in the striatum. The combined administration of agonists for dopamine receptor type 2 (D2) with reserpine attenuated the elongation of striatal neuronal cilia. Repeated treatment with an antagonist of D2, but not of dopamine receptor type 1 (D1), elongated the striatal neuronal cilia. In addition, D2-null mice displayed longer neuronal cilia in the striatum compared to wild-type controls. Reserpine treatment elongated the striatal neuronal cilia in D1-null mice but not in D2-null mice. Repeated treatment with a D2 agonist suppressed the elongation of striatal neuronal cilia on the lesioned side of hemi-parkinsonian rats. These results suggest that the elongation of striatal neuronal cilia following the lack of dopaminergic inputs is attributable to the absence of dopaminergic transmission via D2 receptors. Our results provide the first evidence that the length of neuronal cilia can be modified by the lack of a neurotransmitter''s input.  相似文献   

4.
Primary cilia have well characterized roles in early brain development, relaying signals critical for neurogenesis and brain formation during embryonic stages. Less understood are the contributions of cilia-mediated signaling to postnatal brain function. Several cilia-localized receptors that bind neuropeptides and neurotransmitters endogenous to the brain have been identified in adult neurons, but the functional significance of signaling through these cilia-localized receptors is largely unexplored. Ciliopathic disorders in humans often manifest with neurodevelopmental abnormalities and cognitive deficits. Intriguingly, recent research has also linked several neuropsychiatric disorders and neurodegenerative diseases to ciliary dysfunction. This review summarizes recent evidence suggesting that cilia signaling may dynamically regulate postnatal neuronal physiology and connectivity, and highlights possible links among cilia, neuronal circuitry, neuron survival, and neurological disorders.  相似文献   

5.
Neural stem cells continually generate new neurons in very limited regions of the adult mammalian central nervous system. In the neurogenic regions there are unique and highly specialized microenvironments (niches) that tightly regulate the neuronal development of adult neural stem cells. Emerging evidence suggests that glia, particularly astrocytes, have key roles in controlling multiple steps of adult neurogenesis within the niches, from proliferation and fate specification of neural progenitors to migration and integration of the neuronal progeny into pre-existing neuronal circuits in the adult brain. Identification of specific niche signals that regulate these sequential steps during adult neurogenesis might lead to strategies to induce functional neurogenesis in other brain regions after injury or degenerative neurological diseases.  相似文献   

6.
It has been known for decades that neurons throughout the brain possess solitary, immotile, microtubule based appendages called primary cilia. Only recently have studies tried to address the functions of these cilia and our current understanding remains poor. To determine if neuronal cilia have a role in behavior we specifically disrupted ciliogenesis in the cortex and hippocampus of mice through conditional deletion of the Intraflagellar Transport 88 (Ift88) gene. The effects on learning and memory were analyzed using both Morris Water Maze and fear conditioning paradigms. In comparison to wild type controls, cilia mutants displayed deficits in aversive learning and memory and novel object recognition. Furthermore, hippocampal neurons from mutants displayed an altered paired-pulse response, suggesting that loss of IFT88 can alter synaptic properties. A variety of other behavioral tests showed no significant differences between conditional cilia mutants and controls. This type of conditional allele approach could be used to distinguish which behavioral features of ciliopathies arise due to defects in neural development and which result from altered cell physiology. Ultimately, this could lead to an improved understanding of the basis for the cognitive deficits associated with human cilia disorders such as Bardet-Biedl syndrome, and possibly more common ailments including depression and schizophrenia.  相似文献   

7.
Summary The ependymal lining of the lateral ventricles of the rabbit brain was studied by means of scanning (SEM) and transmission electron microscopy (TEM). There exist cells devoid of cilia in the anterior horn over the region of the caudate nucleus, in the inferior horn over the hippocampus and on the opposite side over cortical regions. On the surface of some of these ependymal cells, accumulations of cytoplasmic folds and globules can be found. They bulge at different height over the ependymal cells. Clots of these cell particles are tied off from the cell, coming to lie as globules either on or between the cilia of the ependyma. TEM reveals that these tissue protrusions are cell debris consisting of different sized vesicles, cell organelles, tubuli and filaments. They originate from the ependymal layer but may reach down to subependymal cells. Multivesicular protrusions into the ventricular lumen are also observed. Possible causes of these protrusions are discussed; they are likely to be related to the age of the animals.On the ependyma of the caudate nucleus cilia, microvilli, microblebs and supraependymal neuronal cell processes are distributed unevenly over the surface. Within regions where cilia predominate there are cells which are tightly covered with microvilli. A certain direction of the course of the supraependymal neuronal fibers could not be found.The author is pleased to acknowledge useful discussions with Prof. Dr. med. E. van der Zypen. This study was partly supported by the Stanley Thomas Johnson Foundation  相似文献   

8.

Background

Neuronal primary cilia are sensory organelles that are critically involved in the proper growth, development, and function of the central nervous system (CNS). Recent work also suggests that they signal in the context of CNS injury, and that abnormal ciliary signaling may be implicated in neurological diseases.

Methods

We quantified the distribution of neuronal primary cilia alignment throughout the normal adult mouse brain by immunohistochemical staining for the primary cilia marker adenylyl cyclase III (ACIII) and measuring the angles of primary cilia with respect to global and local coordinate planes. We then introduced two different models of acute brain insult—temporal lobe seizure and cerebral ischemia, and re-examined neuronal primary cilia distribution, as well as ciliary lengths and the proportion of neurons harboring cilia.

Results

Under basal conditions, cortical cilia align themselves radially with respect to the cortical surface, while cilia in the dentate gyrus align themselves radially with respect to the granule cell layer. Cilia of neurons in the striatum and thalamus, by contrast, exhibit a wide distribution of ciliary arrangements. In both cases of acute brain insult, primary cilia alignment was significantly disrupted in a region-specific manner, with areas affected by the insult preferentially disrupted. Further, the two models promoted differential effects on ciliary lengths, while only the ischemia model decreased the proportion of ciliated cells.

Conclusions

These findings provide evidence for the regional anatomical organization of neuronal primary cilia in the adult brain and suggest that various brain insults may disrupt this organization.
  相似文献   

9.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous inherited human disorder displaying a pleotropic phenotype. Many of the symptoms characterized in the human disease have been reproduced in animal models carrying deletions or knock-in mutations of genes causal for the disorder. Thinning of the cerebral cortex, enlargement of the lateral and third ventricles, and structural changes in cilia are among the pathologies documented in these animal models. Ciliopathy is of particular interest in light of recent studies that have implicated primary neuronal cilia (PNC) in neuronal signal transduction. In the present investigation, we tested the hypothesis that areas of the brain responsible for learning and memory formation would differentially exhibit PNC abnormalities in animals carrying a deletion of the Bbs4 gene (Bbs4-/-). Immunohistochemical localization of adenylyl cyclase-III (ACIII), a marker restricted to PNC, revealed dramatic alterations in PNC morphology and a statistically significant reduction in number of immunopositive cilia in the hippocampus and amygdala of Bbs4-/- mice compared to wild type (WT) littermates. Western blot analysis confirmed the decrease of ACIII levels in the hippocampus and amygdala of Bbs4-/- mice, and electron microscopy demonstrated pathological alterations of PNC in the hippocampus and amygdala. Importantly, no neuronal loss was found within the subregions of amygdala and hippocampus sampled in Bbs4-/- mice and there were no statistically significant alterations of ACIII immunopositive cilia in other areas of the brain not known to contribute to the BBS phenotype. Considered with data documenting a role of cilia in signal transduction these findings support the conclusion that alterations in cilia structure or neurochemical phenotypes may contribute to the cognitive deficits observed in the Bbs4-/- mouse mode.  相似文献   

10.
Many, but likely most, neurons in the central nervous system have a nonmotile "primary" cilium extending like an antenna or finger from one of the pair of centrioles in the cell's centrosome into the extracellular space. Since their discovery over 100 years ago, these organelles have been either dismissed as functionless relicts of a bygone era or more often simply ignored. However, it has long been known that the photoreceptor-bearing outer segments of retinal rods and cones are modified primary cilia and it has recently been found that kidney cells' primary cilia are sensitive flowmeters the disabling of which causes polycystic kidney disease. It has also been recently shown that somatostatin sst3 receptors and serotonin 5-HT(6) receptors are selectively sited on neurons in various parts of the rat brain. It seems likely that these selectively receptored neuronal primary cilia will turn out to be the forerunners of a family of cell-signaling devices that help drive various brain functions by sending signals into their own cells and into adjacent cells through gap junctions and via conventional chemical synapses.  相似文献   

11.
12.
The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li2CO3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.  相似文献   

13.
The densely ciliated granule cell layer of the adult murine hippocampal dentate gyrus is one of two sites of adult neurogenesis. The granule cells have already been proven to localize their SSTR3 (somatostatin receptor 3) receptors to their so-called primary cilia. Here we show for the first time that 70-90% of these cells in 7-18 months-old wild-type and 3×Tg-AD (Alzheimer disease transgenic) mice also load p75NTR receptors into the structures containing SSTR3, i.e., their primary cilia. On the other hand, p75NTR’s TrkA co-receptors were not localized to cilia but conventionally distributed throughout the cell surface. Significantly fewer cells (20-40%) in the hippocampal CA1 and CA3 regions and cerebral cortex have p75NTR containing cilia. While we don’t know what the impact of the cilial localization of p75NTR on dentate gyral adult neurogenesis and memory encoding might be, the cilia’s amyloid β-activatable p75NTR receptors could be damaging or lethal to the hippocampal functioning of amyloid β-accumulating Alzheimer brain.  相似文献   

14.
Louvi A  Grove EA 《Neuron》2011,69(6):1046-1060
The primary cilium is a cellular organelle that is almost ubiquitous in eukaryotes, yet its functions in vertebrates have been slow to emerge. The last fifteen years have been marked by accelerating insight into the biology of primary cilia, arising from the synergy of three major lines of research. These research programs describe a specialized mode of protein trafficking in cilia, reveal that genetic disruptions of primary cilia cause complex human disease syndromes, and establish that Sonic hedgehog (Shh) signal transduction requires the primary cilium. New lines of research have branched off to investigate the role of primary cilia in neuronal signaling, adult neurogenesis, and brain tumor formation. We review a fast expanding literature to determine what we now know about the primary cilium in the developing and adult CNS and what new directions should lead to further clarity.  相似文献   

15.
We have studied in vitro the morphology of two populations of dopaminergic neurons from mouse embryos: the periglomerular interneurons from the olfactory bulb (DOBI) and the efferent neurons from the substantia nigra (DENN). The intrinsic potential of both neuronal types has been studied by comparing process outgrowth in a predominantly neuronal environment or in a glial environment that is endogenous or from other brain regions. Both populations exhibit in vitro different characteristics that reflect their phenotype in situ. In addition they greatly differ in their response to glial signals. DOBI maintain a constant stellate morphology with short processes under all culture conditions tested, whereas DENN exhibit a great plasticity and in particular respond to olfactory bulb glia with a striking increase in neurite length. The olfactory bulb glia differs from other brain region glia in two aspects: (a) in addition to type I astrocytes, common to all the glial monolayers that we have studied, it contains a population of fusiform astrocytes (GFAP+) that might represent the superficial glia (Raisman, 1985); and (b) both astrocytes and fusiform cells produce large amounts of laminin that is secreted in a thick extracellular matrix. DENN outgrowth on olfactory bulb glia, however, is not blocked by antilaminin antibodies that block outgrowth on a laminin substrate. Our results demonstrate that two neuronal populations sharing the same neurotransmitter present intrinsic differences in the control of cell shape. The fact that glia harvested from different brain regions supports varying extent of DENN neurite outgrowth suggests a heterogeneity of environmental signals throughout the developing brain.  相似文献   

16.
Rat brain biopterin, the hydroxylase cofactor, was observed to distribute equally across regional subcellular fractions, rather than to codistribute neuronally with tyrosine and tryptophan hydroxylases for which it functions. Over a 24 h period with light/dark phasing, which some groups have shown to result in cycling of biopterin levels in striate and certain other regions, only the biopterin associated with the crude nuclear fraction of the striate (not associated with neurotransmitter synthesis) demonstrated a diurnal cycle. The selectivity of this perturbation response to the striate nuclear fraction suggests that (1) multiple subcellular loci of biopterin might exist independently in rat brain neurons and (2) the pterin's availability for neurotransmitter biosynthesis is limited beyond its apparent regional concentration. The demonstration of multiple independent sources of neuronal biopterin may be relevant to understanding why regional levels have been so resistant to efforts at pharmacological manipulation (only amphetamine and CRF have changed striate biopterin levels). It also shows that changes in regional hydroxylase cofactor levels may not be related to neurotransmitter synthesis, but instead may result from another presently unknown demand for the cofactor at a disparate neuronal site.  相似文献   

17.
The cannabinoid signaling system is located during brain development in a position concordant with playing a modulatory function in the regulation of neuronal and glial cell proliferation and migration, survival of neural progenitors, axonal elongation and synaptogenesis, and differentiation of oligodendrocytes and formation of myelin. This assumption is based on the fact that CB1 receptors and their ligands emerge early in brain development and are transiently expressed in certain brain regions that play key roles in these processes. We have recently proposed that this modulatory action might be exerted through regulating L1 and other cell adhesion molecules, that are also key elements for those processes. The present commentary will address these two questions trying to summarize all the available evidence and to suggest the future directions for research.  相似文献   

18.
Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.  相似文献   

19.
Polycystin-1 (PC-1), the product of the PKD1 gene, mutated in the majority of cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD), is a very large (∼520 kDa) plasma membrane receptor localized in several subcellular compartments including cell-cell/matrix junctions as well as cilia. While heterologous over-expression systems have allowed identification of several of the potential biological roles of this receptor, its precise function remains largely elusive. Studying PC-1 in vivo has been a challenging task due to its complexity and low expression levels. To overcome these limitations and facilitate the study of endogenous PC-1, we have inserted HA- or Myc-tag sequences into the Pkd1 locus by homologous recombination. Here, we show that our approach was successful in generating a fully functional and easily detectable endogenous PC-1. Characterization of PC-1 distribution in vivo showed that it is expressed ubiquitously and is developmentally-regulated in most tissues. Furthermore, our novel tool allowed us to investigate the role of PC-1 in brain, where the protein is abundantly expressed. Subcellular localization of PC-1 revealed strong and specific staining in ciliated ependymal and choroid plexus cells. Consistent with this distribution, we observed hydrocephalus formation both in the ubiquitous knock-out embryos and in newborn mice with conditional inactivation of the Pkd1 gene in the brain. Both choroid plexus and ependymal cilia were morphologically normal in these mice, suggesting a role for PC-1 in ciliary function or signalling in this compartment, rather than in ciliogenesis. We propose that the role of PC-1 in the brain cilia might be to prevent hydrocephalus, a previously unrecognized role for this receptor and one that might have important implications for other genetic or sporadic diseases.  相似文献   

20.
Abstract: Alterations in the catecholaminergic neurotransmitter systems have been shown to occur in hepatic failure and may contribute to development of hepatic encephalopathy. In the present study we used the rat after complete hepatectomy as a model for study of changes that occur in brain in acute liver failure. We attempted to identify processes in the synthesis, storage, and metabolism of catecholamine neurotransmitters that might be changed during liver failure by measuring levels of, together with those of norepinephrine and dopamine, the precursor (3,4-dihydroxyphenylalanine) and the neuronal metabolites of dopamine and norepinephrine (3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylglycol, respectively) in different regions of brains of control rats and of rats after hepatectomy. We found that in most brain regions of hepatectomized rats there were increases in the concentration of 3,4-dihydroxyphenylalanine or of dopamine but decreases in the concentrations of norepinephrine or of 3,4-dihydroxyphenylglycol. The particulate/supernatant ratios of catecholamines are indices of retention of neurotransmitters in storage sites. These ratios were not different in brain regions between control rats and hepatectomized rats, suggesting that vesicular retention of catecholamines in brain was not impaired after hepatectomy. The data suggest that inhibition of dopamine-β-hydroxylase might be a characteristic of hepatic failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号