首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest fragmentation is thought to threaten primate populations, yet the mechanisms by which this occurs remain largely unknown. However, fragmentation is known to cause dietary shifts in several primate species, and links between food resource distribution and within-group spatial dynamics are well documented. Thus, fragmentation has the potential to indirectly affect spatial dynamics, and these changes may present additional stresses to fragmented populations. I present the results from a 12-month study of Propithecus diadema at Tsinjoarivo, eastern Madagascar, including two groups in fragments and two in continuous forest. Instantaneous data on activity and spatial position were collected during all-day focal animal follows. Fragment groups had much lower cohesion, being more likely to have no neighbor within 5 and 10 m. For continuous forest groups, cohesion was highest in the rainy season (when food patches are large) and lowest in winter (when the animals rely on small-crowned mistletoes), and the chance of having no neighbor within 5 m was positively correlated with mistletoe consumption. Thus their decreased cohesion in fragment groups is inferred to result from their increased reliance on mistletoes and other small resources, which causes them to spread out among multiple patches. This scenario is consistent with the reduced body mass of subordinate individuals (males and immatures) in fragments, and suggests the occurrence of steeper within-group fitness gradients. Further research is necessary to determine whether these patterns apply to other primates; however, since fragmentation tends to cause the loss of the largest trees, many primates in fragments may lose their largest food resources and undergo similar behavioral shifts.  相似文献   

2.

Forest fragmentation and deforestation are major threats to primates at a global scale. The survival of primates in forest fragments largely depends on their behavioral and dietary flexibility, as well as their ability to use a modified matrix in anthropogenic landscapes, hence the importance of determining these ecological parameters in habitats with strong anthropic interventions. This paper aims to describe the activity budget and diet of two groups of the Colombian night monkey (Aotus lemurinus) and to estimate their home range in two peri-urban forest fragments in the city of Manizales, Colombia. We combined scan sampling and handheld GPS fixes in order to determine the behavioral, dietary and spatial patterns of the study groups. Night monkeys spent most of their time resting and traveling and were mainly frugivorous relying on at least 26 plant species in their diet. The most consumed plants included Persea americana, Cecropia angustifolia, Musa x paradisiaca, Cecropia telenitida, and Croton cf. mutisianus. Two of these plants are cultivated species and can provide important resources for populations in small forest fragments. Home range sizes were estimated at 1.7 to 1.8 hectares, using a grid count method. Our results suggest the potential adaptability that these primates have when exposed to anthropogenic habitat disturbances and habitat degradation. Nonetheless, future studies should evaluate the influence of demographic factors and resource availability on the behavioral, dietary and spatial patterns of A. lemurinus in peri-urban forests, in order to further understand their ability to cope with the pervasive processes of habitat fragmentation in the northern Andes.

  相似文献   

3.
Little is known about how resource limitation affects the feeding ecology of primates in forest fragments. Here, we describe seasonal variation in the diet and feeding effort of 2 groups (RH and RC3) of howlers (Alouatta palliata mexicana) living in different sized forest fragments in Los Tuxtlas, Mexico. The RH group, which lived in a larger and more preserved forest fragment, with a higher availability of fruit and Ficus trees, had a higher and more constant consumption of fruit throughout the study year. Moreover, this group fed from larger food sources, i.e., trees, lianas, and shrubs, and spent more time feeding from each food source. The feeding effort, defined as the time spent feeding and traveling divided by time spent resting, of the RH group was also significantly lower and more stable than that of the RC3 group throughout the study year. As feeding effort has been positively related to stress in primates, such increases in feeding effort could have negative consequences for howlers in small or degraded forest fragments. Our study suggests that habitat characteristics interact with plant seasonality to determine the diet and feeding effort of howlers in forest fragments and that groups living in small and degraded forest fragments may be particularly vulnerable to years of low fruit production.  相似文献   

4.
Understanding how primates adjust their behavior in response to seasonality in both continuous and fragmented forests is a fundamental challenge for primatologists and conservation biologists. During a 15-mo period, we studied the activity patterns of 6 communities of spider monkeys (Ateles geoffroyi) living in continuous and fragmented forests in the Lacandona rain forest, Mexico. We tested the effects of forest type (continuous and fragmented), season (dry and rainy), and their interaction on spider monkey activity patterns. Overall, monkeys spent more time feeding and less time traveling in fragments than in continuous forest. A more leafy diet and the spatial limitations in fragments likely explain these results. Time spent feeding was greater in the rainy than in the dry season, whereas time spent resting followed the opposite pattern. The increase in percent leaves consumed, and higher temperatures during the dry season, may contribute to the observed increase in resting time because monkeys probably need to reduce energy expenditure. Forest type and seasonality did not interact with activity patterns, indicating that the effect of seasonality on activities was similar across all sites. Our findings confirm that spider monkeys are able to adjust their activity patterns to deal with food scarcity in forest fragments and during the dry season. However, further studies are necessary to assess if these shifts are adequate to ensure their health, fitness, and long-term persistence in fragmented habitats.  相似文献   

5.
The mechanisms through which forest fragmentation threatens the survival of mammal populations remain poorly known, yet knowledge of this process would greatly aid conservation efforts. I investigated ranging behaviors of diademed sifakas ( Propithecus diadema ) in continuous and fragmented forest at Tsinjoarivo, eastern Madagascar, using focal animal observations to examine home range size, daily path length (DPL), and habitat use relative to forest edges over 12 mo. Sifaka groups in forest fragments had home ranges that were 25–50 percent as large as continuous forest groups, and moderately reduced DPLs. Continuous forest groups foraged more than expected near forest edges while fragment groups avoided edges. Fragments have higher population density than continuous forest; however, several lines of evidence suggest that fragment groups' food resources may be denser, but lower quality. Continuous forest groups appear to be energy-maximizers, maintaining large ranges and preferentially feeding in rare fruiting trees found only in continuous forest interiors, while fragment groups appear to be time-minimizers, using small home ranges and primarily feeding on mistletoe (a fallback food in continuous forest). Therefore, the consequences of fragmentation on long-term viability remain unknown; it is possible that the advantage of increased density is outweighed by longer-term demographic challenges, or other threats ( e.g. , nutrition, health, social behavior, disease). When animals stranded in forest fragments exhibit complex and potentially unpredictable responses, simple ecological proxies ( e.g. , incidence patterns and density) are probably inadequate in assessing population health and viability. Ecological study and monitoring is essential in judging the viability of fragmented populations.  相似文献   

6.
Forest fragmentation can lead to reductions in food availability, especially for some large‐bodied tropical mammals such as spider monkeys. During a 15\xE2\x80\x90mo period, we assessed the diet of Geoffroyi's spider monkey (Ateles geoffroyi) in continuous forest and fragments in the Lacandona region, southern Mexico, and related differences in diet to differences in vegetation structure and composition. We found that both forest types presented top food species for monkeys (e.g., Spondias spp., Brosimum alicastrum), but the sum of the importance value index of these species and the density of large trees were lower in fragments than in continuous forest. We also found that, compared with continuous forest, monkeys in fragments diversified their overall diet, increased consumption of leaves, and reduced the time they spent feeding on trees in favor of more time feeding on hemiepiphytes (particularly Ficus spp.) and palms, both of which were common in fragments. We attribute these changes to the relative food scarcity of the most favored feeding plants in forest fragments. Overall, our findings suggest that monkeys are able to adjust their diet to food availability in fragments, and thus persist in small‐ and medium‐sized fragments. Although it is unlikely that the small size of two of the three study fragments (14 and 31 ha) can maintain viable populations of monkeys in the long term, they may function as stepping stones, facilitating inter‐fragment movements and ultimately enhancing seed dispersal in fragmented landscapes.  相似文献   

7.
The conventional notion is that small-bodied primates should be highly insectivorous in order to obtain protein and other nutrients from a food source that is more easily digestible than plant matter. I studied feeding behavior of Microcebus rufus for 16 months in the east coast rainforest of Ranomafana National Park. I determined the diet primarily through analysis of 334 fecal samples from live-trapped individuals. They consumed a mixed diet basically of fruit and insects year-round. I identified 24 fruits, while 40–52 remain unidentified. Bakerella, a high-lipid epiphytic semiparasitic plant, was in 58% of fecal samples that contained fruit seeds, and was consumed year-round irrespective of general resource availability. It served both as a staple and keystone resource. Fruit was less frequently totally absent from fecal samples of individual mouse lemurs than insect matter was. For Microcebus rufus, fruit may be a primary source of energy, not just complementary to insects. Fruit consumption increased in quantity and diversity during the latter part of the rainy season and the very early part of the dry season, when fruit production was relatively high. This pattern in fruit feeding is similar to that for mouse lemurs in the west coast dry forests and is related to specific nutritional needs dictated by the highly seasonal character of the life cycle. Coleoptera were present in 67% of samples examined and were consumed year-round by the subjects, but insect consumption did not increase during the rainy season when insect abundance was highest.  相似文献   

8.
Using mist nets, we compared phyllostomid bat ensembles of continuous mature forest in Tikal National Park, Guatemala, and of forest fragments in the nearby farming landscape. Of 20 species captured, 13 were shared between treatments, 4 were unique to continuous forest, and 3 were unique to forest fragments. Dominance–diversity curves were similar for the two treatments except that Sturnira lilium comprised 43 percent of captures in the forest fragments, resulting in greater dominance there. Capture rates (and presumably relative abundance) differed significantly between continuous forest and forest fragments, both in terms of species and feeding guilds. Sturnia lilium and Dermanura sp. were captured significantly more often in forest fragments than in continuous forest, whereas Artibeus jamaicensis, A. lituratus, and Centurio senex were taken significantly more often in continuous forest. Large frugivores accounted for a higher proportion of total captures in continuous forest than in forest fragments, whereas small frugivores showed the opposite pattern. By their abundances, Carollia perspicillata and S. lilium are indicators of forest disturbance. The relative abundances of large frugivores, which feed on large fruits of mature forest trees, and small frugivores, which feed on small‐fruited plants occurring in early succession, are an indicator of forest disturbance. Other groups, such as large insect‐ and vertebrate‐eating bats, because of their low capture rates, are impractical as indicators for rapid assessment of forest disturbance based on mist netting, but may prove especially vulnerable to forest fragmentation.  相似文献   

9.
Behavioral flexibility, including an ability to modify feeding behavior, is a key trait enabling primates to survive in forest fragments. In human-dominated landscapes, unprotected forest fragments can become progressively degraded, and may be cleared entirely, challenging the capacity of primates to adjust to the changes. We examined responses of wild chimpanzees (Pan troglodytes schweinfurthii) to major habitat change: that is, clearance of forest fragments for agriculture. Over 7 years, fragments in Bulindi, Uganda, were reduced in size by 80%. We compared the chimpanzees’ diet at the start and end of this period of rapid deforestation, using data derived mainly from fecal analysis. Similar to other long-term study populations, chimpanzees in Bulindi have a diverse diet comprising over 169 plant foods. However, extensive deforestation seemed to impact their feeding ecology. Dietary changes after fragment clearance included reduced overall frugivory, reduced intake of figs (Ficus spp.; formerly a dietary “staple” for these chimpanzees), and reduced variety of fruits in fecal samples. Nevertheless, the magnitude of most changes was remarkably minor given the extent of forest loss. Agricultural fruits increased in dietary importance, with crops accounting for a greater proportion of fruits in fecal samples after deforestation. In particular, cultivated jackfruit (Artocarpus heterophyllus) became a “staple” food for the chimpanzees but was scarcely eaten before fragment clearance. Crops offer some nutritional benefits for primates, being high in carbohydrate energy and low in hard-to-digest fiber. Thus, crop feeding may have offset foraging costs associated with loss of wild foods and reduced overall frugivory for the chimpanzees. The adaptability of many primates offers hope for their conservation in fragmented, rural landscapes. However, long-term data are needed to establish whether potential benefits (i.e. energetic, reproductive) of foraging in agricultural matrix habitats outweigh fitness costs from anthropogenic mortality risk for chimpanzees and other adaptable primates.  相似文献   

10.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

11.
Cattle and agricultural farming in the western Orinoco Basin began in 1555, and since then fragmentation of continuous forest has occurred. We evaluated the effects of the disturbances and the absence of large primates on plant community composition, diversity, and regeneration patterns. Atelines (Lagothrix and Ateles) inhabited the lowlands close to the Andean mountains, but no longer live in fragmented habitats. Their absence may have negative effects on plant populations because atelines play important roles as seed dispersers in neotropical forests, especially for large-seeded plants, which are rarely swallowed by other seed dispersers. We compared 2 1-ha vegetation plots in forest fragments north of the La Macarena Mountains with 7 plots in continuous forest in Tinigua National Park. Both sites share the same climatic conditions and have similar geological origins. There is floristic affinity between forests with similar ecological characteristics; the fragmented forests are also less diverse than the continuous forests. As predicted, the forest fragments have fewer individuals with large seeds. The results suggest that forest fragmentation and local ateline extinctions affect plant communities, reducing diversity and affecting large-seeded plants.  相似文献   

12.
A goal of conservation biology is to determine which types of species are most susceptible to habitat disturbance and which types of disturbed habitats can support particular species. We studied 20 forest fragments outside of Kibale National Park, Uganda, to address this question. At each patch, we determined the presence of primate species, tree species composition, patch size, and distance to nearest patch. We collected demographic, behavioral, and dietary data for Abyssinian black-and-white colobus (Colobus guereza). Black-and-white colobus and red-tailed guenons (Cercopithecus ascanius) were in almost all fragments; Pennant's red colobus (Procolobus pennantii) and chimpanzees (Pan troglodytes) were in some fragments; and blue monkeys (Cercopithecus mitis) and gray-cheeked mangabeys (Lophocebus albigena) were absent from all fragments. No species characteristics—home range, body size, group size, or degree of frugivory—predicted the ability of species to live in patches. No characteristics of patches—area, distance to the nearest patch, distance to Kibale, or number of food trees present—predicted the presence of a particular species in a patch, but distance to Kibale may have influenced presence of red colobus. Black-and-white colobus group size was significantly smaller in the forest patches than in the continuous forest of Kibale. For a group of black-and-white colobus in one patch, food plant species and home range size were very different from those of a group within Kibale. However, their activity budget and plant parts eaten were quite similar to those of the Kibale group. The lack of strong predictive variables as well as differences between other studies of fragmentation and ours caution against making generalizations about primate responses to fragmentation.  相似文献   

13.
Fragmentation reduces habitat area, increases the number of habitat patches, decreases their size, and increases patch isolation. For arboreal mammals such as howlers (Alouatta palliata), canopy modifications from fragmentation processes could also negatively affect habitat quality. We analyzed changes in the composition and plant structure of 15 fragments (1–76 ha) and compared them with vegetation from a continuous tropical rain forest reserve (700 ha) in Los Tuxtlas, Mexico. At each site, we sampled 1000 m2 of all trees, shrubs, and lianas with a diameter at breast height (DBH) ≥10 cm. We obtained estimates of species richness, density, and basal area for different ecological groups, DBH ranges, and top food resources for howlers. We used a stepwise multiple regression analysis to determine relationships between fragment characteristics (size, shape index, and isolation) and plant variables. Compared to continuous forest, fragments have altered composition and plant structure, with large trees absent from the canopy. The basal area of top food resources is higher in continuous forest. Fragment size is the best explanation for the differences in composition and plant structure. The largest fragments had greater basal area of top food resources and more large primary trees in the canopy. Overall, our results suggest that fragmentation altered the habitat quality for howlers.  相似文献   

14.
Forest loss and fragmentation threaten many primates globally, and often leads to a reduction in food resources. During a 22 ‐ mo period, the foraging ecology of the critically endangered kipunji Rungwecebus kipunji was studied in the heterogeneous Rungwe–Livingstone forests, southwest Tanzania, to identify periods of possible ecological stress, fallback foods used by the species, and the impact of forest disturbance on feeding resources. The studied group had a wide diet and was predominantly frugivorous. Fruit consumption was driven by fruit availability which peaked during the wet season, and dipped during the driest months. During this period, two fallback foods: mature leaves and pith were widely consumed, with Macaranga capensis an essential fallback species. α diversity and evenness of diet was remarkably similar across months, but there was high β diversity in diets at the cusp of wet and dry seasons, and during periods of low fruit availability. This suggests considerable dietary adaptability to fluctuating resources, which may act to buffer against further forest disturbance. Tree species associated with relatively undisturbed forest were significantly more important in the diet, especially in the dry season, than those of disturbed forests. Regeneration of key trees (determined through counting of seedlings and saplings in plots) appeared healthy except in two important Ficus species. Conservation management, while focusing on promoting old growth forest, should also consider populations of some important pioneer tree species such as Macaranga capensis both inside the forest and in any reforestation schemes outside the species’ current area of occupancy.  相似文献   

15.
Habitat fragmentation results in new environmental conditions that may stress resident populations. Such stress may be reflected in demographical or morphological changes in the individuals inhabiting those landscapes. This study evaluates the effects of fragmentation of the Maulino forest on population density, sex ratio, body size, and fluctuating asymmetry (FA) of the endemic carabid Ceroglossus chilensis. Individuals of C. chilensis were collected during 2006 in five locations at Los Queules National Reserve (continuous forest), in five forest fragments and in five areas of surrounding pine plantations (matrix). In each location, once a season, 40 pitfall traps (20 in the centre, 20 in the edge), were opened for 72 h. Population density of C. chilensis was higher in the small fragments than in the pine matrix, with intermediate densities in the continuous forest; sex ratio did not differ significantly from 1:1 in the three habitats. Individuals from the centre of fragments were smaller than those from the centre of continuous forest, and FA did not vary significantly among habitats. These results suggest that small forest fragments maintain dense populations of C. chilensis and therefore they must be considered in conservation strategies. Although the decrease of the body size suggests that small remnants should be connected by managing the structure of the surrounding matrix, facilitating the dispersion of this carabid across the landscape and avoiding possible antagonistic interactions inside small fragments.  相似文献   

16.
Bickford CP  Kolb TE  Geils BW 《Oecologia》2005,146(2):179-189
Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or δ13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.  相似文献   

17.
The effects of forest fragmentation on ecological interactions and particularly on food webs have scarcely been analysed. There is usually less herbivory in forest fragments than in continuous forests. Here we hypothesize that forest fragmentation enhances top‐down control of herbivory through an increase in insectivorous birds and a decrease in herbivorous insects, with a consequent decrease in plant reproductive success in small forest fragments. In the Maulino forest in central Chile, we experimentally excluded birds from Aristotelia chilensis (Elaeocarpaceae) trees in both forest fragments and continuous forest, and analysed herbivore insect abundance, herbivory and plant reproductive success during two consecutive growing seasons. We expected that insect abundance and herbivory would increase, and reproductive success would decrease in A. chilensis from which birds have been excluded, particularly in forest fragments where bird abundance and predation pressure on insects is higher. The abundance of herbivorous insects was lower in the forest fragments than in the continuous forest only in the first season, and herbivory was lower in forest fragments than in the continuous forest throughout the study. Moreover, during the second growing season herbivory was greater in the excluded trees than in the control trees, and as expected, there was a greater difference in the fragments than in the continuous forest, but this was not statistically significant. Exclusion of birds did not affect the reproductive success of A. chilensis. Our results, after 2 years of study, demonstrate that birds affect the levels of herbivory on A. chilensis in the Maulino forest, but do not support our hypothesis of enhanced top‐down control in fragmented forests, as the strength of the effect of excluding birds did not vary with fragmentation.  相似文献   

18.
We describe temporal patterns of food consumption by Peruvian spider monkeys (Ateles chamek) in a semihumid forest in lowland Bolivia. We assessed dietary composition in relation to temporal variation in abundance, duration, and synchrony of different food items in their home range. We collected data from September 2003 to September 2004, in the forestry concession La Chonta, Department of Santa Cruz. Throughout the period of detailed feeding data collection (February-September 2004), Ateles chamek used Ficus as a staple food resource. Figs constituted almost 50% of their diet in terms of total time spent feeding, and subjects consumed them to a great extent even during times of high overall food availability. This is contrary to the general expectation that for Neotropical frugivores, Ficus is a fallback food in times of fruit scarcity, rather than a staple food resource. Surprisingly, despite being considered ripe fruit specialists, Ateles chamek spent 18% of their feeding times eating unripe figs. Ateles chamek consumed unripe figs all through the year, including periods when ripe figs and other ripe fruit were abundant. We identify other important fallback foods for Ateles chamek in the forest, in particular the ripe fruit of Myrciaria sp.  相似文献   

19.
Habitat fragmentation could alter ecological traits including species trophic habits. Here, we used carbon and nitrogen stable isotope ratios to establish differences in isotopic niche width and food resource use between forest fragments and the continuous forest for the phyllostomid frugivorous bat Artibeus lituratus. Using mist nests, we captured bats from two forest fragments and two sites in continuous forest, and sampled from each individual captured three body tissues with contrasting turnover rates (skin, muscle, and liver). Samples were collected between February and March (austral summer) and between August and September (austral winter). In addition, in each sampling site and season we collected potential food resources (fruits and insects) consumed by our A. lituratus. Our findings indicate that A. lituratus had a predominantly omnivorous diet, with high consumption of insects during summer in forest fragments. The increasing consumption of insects in these fragments seems to have led to a wider isotopic niche, in relation to the continuous forest. Because A. lituratus is typically a seed disperser, changes in trophic habits in the forest fragments from frugivory to insectivory may diminish their role in forest regeneration. Abstract in Portuguese is available with online material.  相似文献   

20.
Previous studies have used home range size to predict a species’ vulnerability to forest fragmentation. Northern bearded saki monkeys (Chiropotes satanas chiropotes) are medium-bodied frugivores with large home ranges, but sometimes they reside in forest fragments that are smaller than the species’ characteristic home range size. Here we examine how travel and spatial patterns differ among groups living in forest fragments of 3 size classes (1 ha, 10 ha, and 100 ha) versus continuous forest. We collected data in 6 research cycles from July–August 2003 and January 2005–June 2006 at the Biological Dynamics of Forest Fragments Project (BDFFP), north of Manaus, Brazil. For each cycle, we followed the monkeys at each study site from dawn until dusk for 3 consecutive days, and recorded their location. Although bearded saki monkeys living in 10-ha and 1-ha fragments had smaller day ranges and traveled shorter daily distances, they traveled greater distances than expected based on the size of the forest fragment. Monkeys in the small fragments revisited a greater percentage of feeding trees each day, traveled in more circular patterns, and used the fragments in a more uniform pattern than monkeys in the continuous forest. Our results suggest that monkeys in the small fragments maximize their use of the forest, and that the preservation of large tracts of forest is essential for species conservation. Species with large home ranges sometimes inhabit forest fragments, but doing so can alter behavior, demographics, and ecology, and the monkeys may be vulnerable to stochastic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号