共查询到20条相似文献,搜索用时 78 毫秒
1.
Ydj1p是酵母细胞质中一种主要的I型Hsp40分子伴侣,Ydj1p锌指结构在传递底物给Hsp70时发挥重要的作用,锌指结构域的两个锌离子结合位点区域(ZBDⅠ和ZBDⅡ)与半胱氨酸形成配位键对底物传递中维持结构稳定非常重要。本研究通过分子动力学手段对Ydj1p与各锌指结构突变体进行了模拟,分析ZBDⅠ突变体关键残基C143S、C201S,ZBDⅡ突变体关键残基C162S、C185S的突变影响Hsp40与Hsp70的底物传递。分析结果表明,当锌指部位的氨基酸发生突变,不仅能影响Ydj1p的结构稳定性,也能影响底物的传递,并且锌指结构Ⅰ突变体和锌指结构Ⅱ突变体之间也具有明显差异。通过结合能量的分析以及构象变化比对,揭示了Ydj1p以及各锌指结构突变体底物结合能力的强弱,这与生化实验研究了Ydj1p锌指结构与Hsp70合作,帮助多肽传递的功能是至关重要的结果较为相近。 相似文献
2.
Hsp70蛋白自身磷酸化对其分子伴侣功能的影响 总被引:1,自引:0,他引:1
近年对分子伴侣蛋白Hsp70作用机制的研究发现,其ATP功能区域X光晶体结构有一个新的钙离子结合区域,这个新的功能区域与Hsp70分子的ADP结合、ATP水解及合成有关.有报道认为Hsp70蛋白的NDP激酶样作用,通过形成酸不稳定性自身磷酸化中间体催化γ 磷酸基团在ATP和ADP间传递,组氨酸H89与这个新的区域有密切关系,有可能与Hsp70蛋白形成自身磷酸化中间体有关.本研究运用基因定位诱导突变技术,将89位组氨酸以丝氨酸替代(H89S),通过比较Hsp70野生型及突变型蛋白的自身磷酸化过程的改变,及其对Hsp70蛋白体外荧光素酶活性影响的不同,初步探讨Hsp70作用机制.结果发现,突变的H89S蛋白自身磷酸化过程及体外变性荧光素酶重折叠受到抑制.野生型蛋白未受到影响,野生型Hsp70可以形成酸不稳定的自身磷酸化中间体,产生CDP依赖性解磷酸反应,而H89S突变型蛋白不能形成这种反应.89位组氨酸点突变能显著降低ATP酶交换反应及体外变性荧光素酶重折叠水平,但它的自身磷酸化可能并非唯一必需的介导位点或只是一个选择性的功能侧链. 相似文献
3.
Hsc70与auxilin蛋白组成的系统是Hsp70/Hsp40分子伴侣系统家族的一员,在热休克反应中发挥重要作用。本文为得出auxilin蛋白J结构域的关键氨基酸,首先采用由二硫键交联的Hsc70 R171C与auxilin D876C的复合物结晶结构作为初始模型,进行分子动力学模拟,通过比较平衡后的结合部位发现,将形成二硫键的氨基酸突变为原来的氨基酸结构在结合位点上与生化结果较为相近,之后利用此结构通过拉伸动力学模拟分析了auxilin蛋白J结构域与Hsc70的ATPase功能域的解离过程,并探讨了Hsc70与auxilin蛋白之间的相互作用力。结果表明位于HPD loop上的His874,Asp876,Thr879,螺旋Ⅲ上的Glu884,Asn895,Asp896,Ser899,Glu902,Asn903为关键氨基酸,这些数据符合之前核磁共振实验证实的T抗原J结构域的HPD基序和螺旋Ⅲ与Hsc70的ATPase功能域之间的相互作用。 相似文献
4.
旨在研究肠上皮细胞(IEC-6)RNA干扰效率的特染条件,并对4对Hsp70干抚序列进行筛选,为进一步以RNA干扰(RNAi)技术研究Hsp70对胃肠道的保护功能以及介导信号通路的机理打下基础.以24孔培养板培养IEC-6细胞,利用阳高子脂质体特染FAM-siRNA片段进入IEC-6细胞,采用荧光倒置显微镜和流式细胞仪检测FAM-siRNA和特染试剂Lipofectamine 2000不同剂量比例对特染效率的影响,并进一步采用RT-PCR和Western blotting方法对Hsp70干扰序列进行筛选.试验结果表明,采用脂质体转染法可获得较高的转染效率,其中以80 nmol/L FAM-siRNA+1μL Lipofectamine 2000组的转染效率最高(85.77%).针对4个不同靶位点,进行Hsp70基因干涉,结果表明,4个组中Hsp70 mRNA的表达显著下降,其中oligo 4组的基因表达极显著降低.Western blotting的结果表明,oligo 2、oligo3和oligo4组中的Hap70蛋白表达极显著降低.最终确定80 nmol/L FAM-siRNA+1μL Lipofectamine 2000为最佳转染条件,以oligo 4(Hap70的基因位点为3672 -3692)为最佳RNA干扰靶基因. 相似文献
5.
大肠杆菌分子伴侣蛋白Dna K氮端核苷酸结合域(NBD,nucleotide-binding domain)的II-A和II-B子域之间的一些高度保守的扭链残基突变后(I202A,S203A,G223A,L227A,G228A),其ATPase活性也发生变化原因不清楚。我们通过同源建模的方法构建NBD与小分子ATP相互作用的各蛋白模型,使用分子动力学模拟方法研各模型的结构变化并尝试找出其与ATPase活性变化的关系。结果表明,除L227A外,所有突变模型T11烃基与ATP-γ磷酸基团间的距离与活性变化间具有明显规律;但是所有模型中,能影响与Dna J结合,从而影响ATPase活性的β220(214-221)部分的紧致性变化符合规律,进一步的蛋白对接实验证实了这一点,所以这些扭链残基突变体可能主要是通过这两个部分的变化,引起ATPase活性的改变。 相似文献
6.
二酮酸类化合物(DKAs)是目前最有前景的HIV-1整合酶(integrase, IN)抑制剂.为了解DKAs引起的多种耐药株共有的耐药性机理,选择3种S-1360引起的IN耐药突变体,用分子对接和分子动力学模拟,研究了野生型和突变型IN与S-1360的结合模式,基于该结合模式探讨了3种耐药突变体所共有的耐药性机理.结果表明:在突变体中,S-1360结合到耐药突变IN核心区中的位置靠近功能loop 3区却远离与 DNA结合的关键残基,结合位置不同导致S-1360的抑制作用部分丧失;残基138到166区域的柔性对IN发挥生物学功能很重要,S-1360能与DNA结合的关键残基N155及K159形成氢键,这2个氢键作用降低了该区域的柔性,突变体中无类似氢键,因而该区域柔性增高;在突变体中,S-1360的苯环远离病毒DNA结合区,不能阻止病毒DNA末端暴露给宿主DNA;T66I突变导致残基Ⅰ的长侧链占据IN的活性口袋,阻止抑制剂以与野生型中相同的方式结合到活性中心,这均是产生抗药性的重要原因.这些模拟结果与实验结果吻合,可为抗IN的抑制剂设计和改造提供帮助. 相似文献
7.
8.
酶分子催化机理研究是生命科学研究领域一个重要的问题.近80年来,过渡态理论在解释酶催化机理问题上占据了主导地位,结合热力学循环、锁钥学说、诱导契合学说以及酶活性中心柔性学说等理论,可以很好地解释多种酶分子的催化过程.近年来,随着蛋白质结构解析方法、单分子分析检测技术及计算机模拟技术的发展,人们对酶分子催化机理的认识愈加深刻.但持续性催化酶类的催化动力研究表明,过渡态理论的解释并不充分.本文对酶催化机理研究的相关进展进行了综述,并针对持续性酶类催化动态过程的特点提出了可能的研究方向及可行的研究方法. 相似文献
9.
HIV-1整合酶核心区野生型和F185K突变型活性和溶解性的比较及分子动力学模拟分析 总被引:1,自引:0,他引:1
表达纯化了野生型(WT)及F185K突变型HIV-1整合酶核心区蛋白(INC),并对二者的溶解性和活性进行了比较.实验结果表明:F185K 突变后INC溶解性显著提高,活性有一定程度降低.对WT和F185K INC体系进行了1800 ps的分子动力学模拟.模拟结果表明:F185K INC功能loop区柔性和蛋白质整体运动性降低,使蛋白质活性降低,F185K突变后盐桥网络的变化驱动了INC局部构象改变,引起INC表面的部分疏水残基被包埋,亲水残基暴露,相对亲水溶剂可接近面积增大,同时,突变后INC与水之间形成氢键的数量增加,与水之间作用加强,以上变化使INC溶解性提高.分子动力学模拟与实验结果相吻合.为理解蛋白质溶解性和对蛋白质进行可溶性改造提供了一定的理论依据. 相似文献
10.
采用RT-PCR及RACE技术克隆锯缘青蟹(Scylla serrata)的热休克蛋白Hsp70基因并进行序列分析。克隆测序后拼接得到一条长2482 bp的cDNA序列,该序列ORF(Open reading frame,开放阅读框)为1950 bp,编码649个氨基酸,分子量约为71.06 kD,理论等电点为5.24。3'UTR(untranslated region,非编码区)为158 bp,5'UTR为40 bp。通过antheprot分析发现2个Hsp70家族的签名序列:IFDLGGGTFDVSIL,IVLVGGSTRIPKIQK;Dnak特征基序DLGTT-S-V;非细胞器基序:RARFEEL;核定位信号标签:KKDPSESKRALRRL;胞质Hsp70特征基序EEVD。同源性分析表明,锯缘青蟹Hsp70编码区核苷酸序列与凡纳滨对虾(Litopenaeus vannamei)、斑节对虾(Penaeus monodon)、罗氏沼虾(Macrobrachium rosenbergii)的相似性分别为84.02%、83.87%和79.60%;核苷酸序列所推导出的Hsp70氨基酸序列,与凡纳滨对虾、斑节对虾和罗氏沼虾的相似性分别为92.79%、92.17%和96.47%。本研究克隆了锯缘青蟹Hsp70基因,为进一步深入研究锯缘青蟹的抗逆机理及其遗传改良奠定了基础。 相似文献
11.
12.
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Here, we show that Hsp105alpha and Hsp105beta bind non-native protein through the beta-sheet domain and suppress the aggregation of heat-denatured protein in the presence of ADP rather than ATP. In contrast, Hsc70/Hsp40 suppressed the aggregation of heat-denatured protein in the presence of ATP rather than ADP. Furthermore, the overexpression of Hsp105alpha but not Hsp70 in COS-7 cells rescued the inactivation of luciferase caused by ATP depletion. Thus, Hsp105/110 family proteins are suggested to function as a substitute for Hsp70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress, in which the cellular ATP level decreases markedly. 相似文献
13.
Lena B?ttinger Silke Oeljeklaus Bernard Guiard Sabine Rospert Bettina Warscheid Thomas Becker 《The Journal of biological chemistry》2015,290(18):11611-11622
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings. 相似文献
14.
Molecular chaperones are important components of mitochondrial protein biogenesis and are required to maintain the organellar function under normal and stress conditions. We addressed the functional role of the Hsp100/ClpB homolog Hsp78 during aggregation reactions and its functional cooperation with the main mitochondrial Hsp70, Ssc1, in mitochondria of the yeast Saccharomyces cerevisiae. By establishing an aggregation/disaggregation assay in intact mitochondria we demonstrated that Hsp78 is indispensable for the resolubilization of protein aggregates generated by heat stress under in vivo conditions. The ATP-dependent disaggregation activity of Hsp78 was capable of reversing the preprotein import defect of a destabilized mutant form of Ssc1. This role in disaggregation of Ssc1 is unique for Hsp78, since the recently identified, Hsp70-specific chaperone Zim17 had no effect on the resolubilization reaction. We observed only a minor effect of the second mitochondrial Hsp100 family member Mcx1 on protein disaggregation. A "holding" activity of the mitochondrial Hsp70 system was a prerequisite for a successful resolubilization of aggregated proteins. We conclude that the protective role of Hsp78 in thermotolerance is mainly based on maintaining the molecular chaperone Ssc1 in a soluble and functional state. 相似文献
15.
The chaperone activity of Hsp70 in protein folding and its conformational switching are regulated through the hydrolysis of ATP and the ATP-ADP exchange cycle. It was reported that, in the presence of physiological concentrations of ATP (approximately 5 mM) and ADP (approximately 0.5 mM), Hsp70 catalyzes ATP-ADP exchange through transfer of gamma-phosphate between ATP and ADP, via an autophosphorylated intermediate, whereas it only catalyzes the hydrolysis of ATP in the absence of ADP. To clarify the functional domain of the ATP-ADP exchange activity of Hsp70, we isolated the 44-kD ATPase domain of Hsp70 after limited proteolysis with alpha-chymotrypsin (EC 3.4.21.1). The possibility of ATP-ADP exchange activity of a contaminating nucleoside diphosphate kinase (EC 2.7.4.6) was monitored throughout the experiments. The purified 44-kD ATPase domain exhibited intrinsic ATP-ADP exchange by catalyzing the transfer of gamma-phosphate between ATP and ADP with acid-stable autophosphorylation at Thr204. 相似文献
16.
Elena Y. Komarova Darya A. Meshalkina Nikolay D. Aksenov Ivan M. Pchelin Elena Martynova Boris A. Margulis Irina V. Guzhova 《Cell stress & chaperones》2015,20(2):343-354
Chaperone Hsp70 can cross the plasma membrane of living cells using mechanisms that so far have not received much research attention. Searching the part of the molecule that is responsible for transport ability of Hsp70, we found a cationic sequence composed of 20 amino acid residues on its surface, KST peptide, which was used in further experiments. We showed that KST peptide enters living cells of various origins with the same efficiency as the full-length chaperone. KST peptide is capable of carrying cargo with a molecular weight 30 times greater than its own into cells. When we compared the membrane-crossing activity of KST peptide in complex with Avidin (KST–Av complex) with that of similarly linked canonical TAT peptide, we found that TAT peptide penetrated SK-N-SH human neuroblastoma cells at a similar rate and efficiency as the KST peptide. Furthermore, KST peptide can carry protein complexes consisting of a specific antibody coupled to the peptide through the Avidin bridge. An antibody to Hsp70 delivered to SK-N-SH cells with high expression level of Hsp70 reduced the protective power of the chaperone and sensitized the cells to the pro-apoptotic effect of staurosporine. We studied the mechanisms of penetration of KST–Av and full-length Hsp70 inside human neuroblastoma SK-N-SH and human erythroleukemia K-562 cells and found that both used an active intracellular transport mechanism that included vesicular structures and negatively charged lipid membrane domains. Competition analysis of intracellular transport showed that the chaperone reduced intracellular penetration of KST peptide and conversely KST peptide prevented Hsp70 transport in a dose-dependent manner.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-014-0554-z) contains supplementary material, which is available to authorized users. 相似文献17.
Cassandra A. Louw Michael H. Ludewig Jens Mayer Gregory L. Blatch 《Parasitology international》2010,59(4):497-505
Proteins belonging to the Hsp70 class of molecular chaperones are highly conserved and ubiquitous, performing an essential role in the maintenance of cellular homeostasis in almost all known organisms. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are human parasites collectively known as the Tritryps. The Tritryps undergo extensive morphological changes during their life cycles, largely triggered by the marked differences between conditions in their insect vector and human host. Hsp70s are synthesised in response to these marked changes in environment and are proposed to be required for these parasites to successfully transition between differentiation stages while remaining viable and infective. While the Tritryps Hsp70 complement consists of homologues of all the major eukaryotic Hsp70s, there are a number of novel members, and some unique structural features. This review critically evaluates the current knowledge on the Tritryps Hsp70 proteins with an emphasis on T. brucei, and highlights some novel and previously unstudied aspects of these multifaceted molecular chaperones. 相似文献
18.
Filip Trcka Michal Durech Petr Man Lenka Hernychova Petr Muller Borivoj Vojtesek 《The Journal of biological chemistry》2014,289(14):9887-9901
Maintenance of protein homeostasis by molecular chaperones Hsp70 and Hsp90 requires their spatial and functional coordination. The cooperation of Hsp70 and Hsp90 is influenced by their interaction with the network of co-chaperone proteins, some of which contain tetratricopeptide repeat (TPR) domains. Critical to these interactions are TPR domains that target co-chaperone binding to the EEVD-COOH motif that terminates Hsp70/Hsp90. Recently, the two-TPR domain-containing protein, Tomm34, was reported to bind both Hsp70 and Hsp90. Here we characterize the structural basis of Tomm34-Hsp70/Hsp90 interactions. Using multiple methods, including pull-down assays, fluorescence polarization, hydrogen/deuterium exchange, and site-directed mutagenesis, we defined the binding activities and specificities of Tomm34 TPR domains toward Hsp70 and Hsp90. We found that Tomm34 TPR1 domain specifically binds Hsp70. This interaction is partly mediated by a non-canonical TPR1 two-carboxylate clamp and is strengthened by so far unidentified additional intermolecular contacts. The two-carboxylate clamp of the isolated TPR2 domain has affinity for both chaperones, but as part of the full-length Tomm34 protein, the TPR2 domain binds specifically Hsp90. These binding properties of Tomm34 TPR domains thus enable simultaneous binding of Hsp70 and Hsp90. Importantly, we provide evidence for the existence of an Hsp70-Tomm34-Hsp90 tripartite complex. In addition, we defined the basic conformational demands of the Tomm34-Hsp90 interaction. These results suggest that Tomm34 represents a novel scaffolding co-chaperone of Hsp70 and Hsp90, which may facilitate Hsp70/Hsp90 cooperation during protein folding. 相似文献
19.
Jorgensen ND Andresen JM Pitt JE Swenson MA Zoghbi HY Orr HT 《Journal of neurochemistry》2007,102(6):2040-2048
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776. 相似文献
20.
Yi Jin Reyal S. Hoxie Timothy O. Street 《Protein science : a publication of the Protein Society》2017,26(6):1206-1213
Hsp90 is a dimeric molecular chaperone that undergoes an essential and highly regulated open‐to‐closed‐to‐open conformational cycle upon ATP binding and hydrolysis. Although it has been established that a large energy barrier to closure is responsible for Hsp90's low ATP hydrolysis rate, the specific molecular contacts that create this energy barrier are not known. Here we discover that bacterial Hsp90 (HtpG) has a pH‐dependent ATPase activity that is unique among other Hsp90 homologs. The underlying mechanism is a conformation‐specific electrostatic interaction between a single histidine, H255, and bound ATP. H255 stabilizes ATP only while HtpG adopts a catalytically inactive open configuration, resulting in a striking anti‐correlation between nucleotide binding affinity and chaperone activity over a wide range of pH. Linkage analysis reveals that the H255‐ATP salt bridge contributes 1.5 kcal/mol to the energy barrier of closure. This energetic contribution is structurally asymmetric, whereby only one H255‐ATP salt‐bridge per dimer of HtpG controls ATPase activation. We find that a similar electrostatic mechanism regulates the ATPase of the endoplasmic reticulum Hsp90, and that pH‐dependent activity can be engineered into eukaryotic cytosolic Hsp90. These results reveal site‐specific energetic information about an evolutionarily conserved conformational landscape that controls Hsp90 ATPase activity. 相似文献