首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sveshnikova  A. N.  Panteleev  M. A.  Dreval  A. V.  Shestakova  T. P.  Medvedev  O. S.  Dreval  O. A. 《Biophysics》2017,62(5):842-847

The aim of this paper is to construct a mathematical model that takes the main physiological parameters of blood-glucose regulation into account, in order to identify these parameters for an individual patient according to continuous glucose-monitoring data. The constructed mathematical model consists of six ordinary differential equations that describe the dynamics of changes in glucose concentrations, as well as insulin and anti-insulin factors in the blood. Estimation of the parameters of the equations was performed using an evolutionary programming method. The model predictions were fitted to the continuous glucosemonitoring data. As a result of the identification of the model parameters for two patients with type 1 diabetes mellitus, the estimated insulin secretion was close to zero and the estimated glucose utilization and insulin clearance were increased in comparison with the data for healthy donors. Here, we present a personalized model of the regulation of blood glucose, which can be used to predict the results of continuous glucose monitoring depending on modification of the prescribed glucose-lowering therapy. This approach can significantly reduce the number of iterations of the selection of medical hypoglycemic therapy and therefore increase the effectiveness of treatment according to glucose-monitoring data.

  相似文献   

2.
Pancreatic β-cells sense the ambient blood-glucose concentration and secrete insulin to signal other tissues to take up glucose. Mitochondria play a key role in this response as they metabolize nutrients to produce ATP and reactive oxygen species (ROS), both of which are involved in insulin secretion signaling. Based on data available in the literature and previously developed mathematical models, we present a model of glucose-stimulated mitochondrial respiration, ATP synthesis, and ROS production and control in β-cells. The model is consistent with a number of experimental observations reported in the literature. Most notably, it captures the nonlinear rise in the proton leak rate at high membrane potential and the increase in this leak due to uncoupling protein (UCP) activation by ROS. The functional forms used to model ROS production and UCP regulation yield insight into these mechanisms, as many details have not yet been unraveled in the experimental literature. We examine short- and long-term effects of UCP activation inhibition and changes in the mitochondrial density on mitochondrial responses to glucose. Results suggest increasing mitochondrial density while decreasing UCP activity may be an effective way to increase glucose-stimulated insulin secretion while decreasing oxidative stress.  相似文献   

3.
目的:探讨通过一次性注射高剂量链脲佐菌素( streptozotocin,STZ)方法建立1型糖尿病小型猪模型的可行性。方法中华实验小型猪耳缘静脉一次性注射链脲佐菌素溶液150 mg/kg,分别在给药前和给药后10 min、30 min、90 min、第1天、第2天、第3天和第7天空腹采集静脉血,动态监测空腹血糖,并利用静脉糖耐量实验和C肽释放实验对模型进行鉴定。结果给药后第1天开始,模型组空腹血糖明显升高并始终维持在16.7~20.6 mmol/L的浓度范围,达到糖尿病标准;静脉葡萄糖耐量试验和C肽释放实验结果表明,静脉注射体积分数50%的葡萄糖1 h后模型猪血糖浓度高于11.1 mmol/L,2 h后未能恢复至空腹血糖水平;而胰岛素和C肽在注入葡萄糖后基本未发生任何反应,始终保持痕量水平。结论一次性静脉注射大剂量链脲佐菌素的方法能够成功建立1型糖尿病小型猪模型。  相似文献   

4.
Peripheral venous (plasma) insulin and C-peptide concentrations were measured in eight normal subjects given oral or intravenous glucose sufficient to produce similar plasma glucose concentrations. The expected increased insulin response to oral as compared with intravenous glucose was not matched by a comparable increase in C-peptide concentration. The ratio of insulin to C-peptide concentrations doubled 30 minutes after oral glucose was given; no comparable rise was seen with intravenous glucose (p = 0.01). This finding is interpreted as evidence for decreased hepatic extraction of insulin after administration of oral glucose. Such a decrease could account for at least half of the well known difference in peripheral insulin concentrations after administration of oral as compared with intravenous glucose.  相似文献   

5.
目的探讨血糖波动对糖尿病大鼠海马体造成的炎性损伤。方法用链脲佐菌素(streptozotocin,STZ)和葡萄糖制备SD大鼠糖尿病模型(M组)和持续高血糖模型(MS组),并错时腹腔注射给予葡萄糖、胰岛素制备糖尿病血糖波动大鼠模型(MF组)。血糖波动造模第6周时,测定大鼠一般生理学指标,血糖(glucose,Glu)、甘油三酯(triglyceride,TG)、低密度脂蛋白(low density lipoprotein,LDL-C)和高密度脂蛋白(high density lipoprotein,HDL-C)等血液生化指标;同时采用荧光定量PCR法检测大鼠海马体中IL-1β、IL-2、IL-6、IL-8、TNF-α等炎性因子mRNA的表达,Morris水迷宫试验检测血糖波动对糖尿病大鼠学习和空间记忆功能的影响。结果 (1)血糖波动造模第6周时,M组、MS组及MF组大鼠体质量显著低于N组(P〈0.01),M组、MS组及MF组之间在1%极显著水平下无差异(P〉0.01)。(2)尾静脉注射STZ 1周后,M组、MS组、MF组的Glu、TG、LDL-C都有显著性的提高(P〈0.01),HDL-C显著性下降(P〈0.01)。(3)与正常组比较,各模型组海马组织的IL-1β、IL-6、IL-8以及TNF-α均呈现显著性变化(所有P〈0.05),组间IL-2水平则差异无显著性(P〉0.05)。其中,血糖波动模型MF组IL-1β和TNF-α水平的变化最大,达到极显著水平(P〈0.01),并显著高于M组和MS组水平(P〈0.01)。尽管IL-2水平在各组间无统计学上的差异显著,仍可见血糖波动模型MF组中表达水平最低。(4)M组、MS组、MF组的逃避潜伏期、经过平台的次数以及在平台象限内的游泳距离与N组相比均呈极显著提高(所有P〈0.01),其中血糖波动模型MF组的逃避潜伏期和过平台次数显著高于M组和MS组(P〈0.01),提示MF组空间定位和记忆功能受损最严重,平台象限内的游泳距离在三种糖尿病模型组间差异无显著性(P〉0.05)。结论相较急性高血糖和慢性持续性高血糖而言,波动性高血糖对大脑海马体造成的炎性损伤以及功能影响更为严重。  相似文献   

6.
7.
Paired oral and intravenous glucose tolerance tests were carried out in patients who had undergone truncal vagotomy and pyloroplasty, selective vagotomy and pyloroplasty, or highly selective vagotomy at least six months earlier. Intravenous glucose tolerance was similar in all three groups. Oral glucose elicited significantly higher concentrations of plasma insulin in patients who had undergone selective and highly selective vagotomy than in those treated by truncal vagotomy. When the same amount of glucose was given intravenously, however, plasma insulin concentrations were similar in all three groups of patients. The insulin secreted in response to intravenous glucose expressed as a percentage of that secreted in response to oral glucose was 112% for truncal vagotomy, 51% for selective vagotomy, and 52% for highly selective vagotomy. Truncal vagotomy thus led to a diminished insulin response to oral glucose, which was probably due to impaired release of small-bowel hormones.  相似文献   

8.
Diabetes is a disease of the glucose regulatory system that is associated with increased morbidity and early mortality. The primary variables of this system are beta-cell mass, plasma insulin concentrations, and plasma glucose concentrations. Existing mathematical models of glucose regulation incorporate only glucose and/or insulin dynamics. Here we develop a novel model of beta -cell mass, insulin, and glucose dynamics, which consists of a system of three nonlinear ordinary differential equations, where glucose and insulin dynamics are fast relative to beta-cell mass dynamics. For normal parameter values, the model has two stable fixed points (representing physiological and pathological steady states), separated on a slow manifold by a saddle point. Mild hyperglycemia leads to the growth of the beta -cell mass (negative feedback) while extreme hyperglycemia leads to the reduction of the beta-cell mass (positive feedback). The model predicts that there are three pathways in prolonged hyperglycemia: (1) the physiological fixed point can be shifted to a hyperglycemic level (regulated hyperglycemia), (2) the physiological and saddle points can be eliminated (bifurcation), and (3) progressive defects in glucose and/or insulin dynamics can drive glucose levels up at a rate faster than the adaptation of the beta -cell mass which can drive glucose levels down (dynamical hyperglycemia).  相似文献   

9.
Placental growth hormone (PGH) progressively replaces pituitary growth hormone in the maternal circulation from mid-gestation onwards in human pregnancy. Our previous investigations have shown that placental growth hormone concentrations correlate well with foetal growth. Despite the apparent correlation between PGH and birthweight, the physiology of its secretion during pregnancy has not been well defined. We investigated the response of maternal serum PGH to oral glucose loading in pregnant women (n = 24) who demonstrated normal glucose tolerance at a mean gestation of 29 weeks. Mean (SEM) fasting PGH concentrations were high (36.9 [6.4] ng/ml). No suppression of PGH was noted at one, two or three hours after a 75 g oral glucose load. Similarly, no changes were noted in growth hormone binding protein or in calculated free PGH over the course of the glucose tolerance test. As expected, insulin concentrations rose sixfold and insulin like growth factor binding protein 1 concentrations fell by 20 % with glucose loading. Correlation analysis showed maternal weight, BMI, fasting serum glucose serum insulin to be significantly correlated with the babies' birthweight. Our results support the proposition that PGH concentrations in maternal serum are not suppressed by oral glucose loading in non-diabetic mothers.  相似文献   

10.
A number of commonly consumed fruits and vegetables (e.g., kiwifruit, pineapple and taro) cause oral irritation, and there is anecdotal evidence that this influences the acceptability of such products. In each of these foods, oral irritation is produced by free crystalline calcium oxalate (raphides). The psychophysics of the mechanical oral irritation caused by raphides was studied in two experiments using a model system based on kiwifruit. In the first experiment, the location of irritant sensations and perceived intensity of the irritation caused by suspensions of raphides were determined using a ten-member trained sensory panel. Stinging and numbing were found to increase significantly with increasing concentrations of raphides. Stinging occurred principally on the tongue as well as in the throat and numbing principally on the tongue. The number of oral areas irritated was shown to increase with raphide concentration and to decrease over a 60-min period. In the second experiment, sugars (fructose, sucrose, glucose and inositol), acids (citric, malic and quinic) and an enzyme (actinidin) were added to the model to examine interactions between these chemical stimuli and the mechanical action of the raphides. Addition of acids to the model was shown to enhance irritation in addition to increasing sourness and suppressing sweetness. The addition of actinidin had no significant effects on irritation or tastes. It is suggested that acidity may aggravate irritation at low raphide concentration, but beyond a critical level of mechanical irritation the presence of acids has little additional effect. These results provide the first detailed data of the psychophysics of mechanical oral irritation in food, and have important implications for producing foods with lower levels of irritation and increased acceptability.  相似文献   

11.
The Model presented in this work demonstrates the combination of cell-cycle model with a model describing the growth and conversion kinetics of hybridoma cells in a steady-state continuous culture. The cell-cycle model is based upon a population balance model as described by Cazzador et al. and assumes the existence of a cycling-and apoptotic-cell population, which together form the viable-cell population. In this part the fraction of apoptotic cells, the age distribution of the cycling and apoptotic-cell population, the mean volume and biomass content per cell of the cycling, apoptotic, and viable cells, and the specific growth and death rates of the cells are calculated. The metabolic part consists of a Monod-type growth equation, four elemental balances, an equation assuming a constant yield of ammonia on glutamine, an equation for product formation, and the relation of Glacken for energy production. Furthermore, a maintenance-energy model for the consumption of glucose and glutamine is introduced, which combines the approaches of Herbert and Pirt into one model in a way similar to Beeftink et al. For energy consumption a Pirt model is assumed. The model is capable of predicting trends in steady-state vaues of a large number of variables of interest like specific growth rate, specific death rate, viability, cell numbers, mean viable-cell volume, and concentrations and conversion rates of product, glucose, glutamine, lactate, and ammonia. Also the concentrations and conversion rates of oxygen and carbon dioxide are qualitatively predicted. The values of the model predictions are generally close to experimental data obtained from literature. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Post-exercise muscle uptake and the intracellular fate of glucose was studied after oral or intravenous glucose administrations which caused similar plasma glucose concentrations, but high and moderate plasma insulin concentrations, respectively. Five male subjects participated in two experiments with 6-16 weeks in between. In the first experiment, the oral glucose experiment (OG), 1.4, 0.7 and 0.7 g.kg-1 body mass of glucose was given as oral loads at 0, 1 and 2 h of a 3-h post-exercise observation period (3hOP). In the second experiment, the glucose clamp experiment (GC), a glucose infusion clamp technique was employed. Based on repetitive, immediate plasma glucose measurements performed every 5th min, the rate of glucose infusion was adjusted to obtain the same temporal pattern of the plasma glucose concentration as in OG. The average plasma glucose concentrations during 3hOP were 9.2 +/- 1.1 and 9.3 +/- 1.2 mmol.1(-1) in OG and GC, respectively. The average arterio-femoral venous (a-v)f glucose differences were 1.0 +/- 0.3 and 0.5 +/- 0.2 mmol.1(-1) (p less than 0.001), while the average plasma insulin concentrations were 56 +/- 12 and 26 +/- 5 microU.ml-1 (p less than 0.001) for the two experiments. Increases in muscle glycogen concentrations were 28 +/- 4 and 25 +/- 3 mmol.kg-1 (NS) during 3hOP in OG and GC, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat.  相似文献   

14.
Mathematical models afford a procedure of unifying concepts and hypotheses by expressing quantitative relationships between observables. The model presented indicates the roles of both insulin and glucagon as regulators of blood glucose, albeit in different ranges of the blood glucose concentrations. Insulin secretion is induced during hyperglycemia, while glucagon secretion results during hypoglycemia. These are demonstrated by simulations of a mathematical model conformed to data from the oral glucose tolerance test and the insulin infusion test in normal control subjects and stable and unstable diabetic patients. The model studies suggest the parameters could prove of value in quantifying the diabetic condition by indicating the degree of instability. Presented at the Society for Mathematical Biology Meeting, University of Pennsylvania, Philadelphia, August 19–21, 1976.  相似文献   

15.
A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (Q(Glc)) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (q(Glc)7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas q(Glc) is affected by glutamine, q(Gln) appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

16.

Background

Plasma interleukin-6 (IL-6) concentrations decrease acutely 1 h after ingestion of a glucose load or mixed meals and this may be mediated by an anti-inflammatory effect of insulin. The aim of the present study was to compare the effect of higher versus lower insulin levels on plasma IL-6 concentrations following oral compared with intravenous glucose administration in overweight/obese subjects.

Methods and Findings

Fifteen subjects (12 women and 3 men) with BMI >28 kg/m2 were given an oral glucose load (75g) followed a week later by an intravenous infusion of glucose aimed at matching plasma glucose concentrations during the oral glucose load. A week later, they drank a volume of water equivalent to the volume consumed with the oral glucose load. Plasma glucose, insulin, nonesterified fatty acids, and IL-6 concentrations and blood hematocrit were measured at 30 minute intervals for 2 h following each intervention. Plasma IL-6 decreased (13–20%) significantly (P = 0.009) at 30 min to 90 min following the oral glucose load and did not change significantly following the other two interventions. The incremental area under the curve for plasma IL-6 concentrations following oral intake of glucose was significantly lower compared with concentrations following intravenous glucose (P = 0.005) and water control (P = 0.02). Circulating insulin concentrations were significantly (P<0.001) and 2.8 fold higher following oral compared with intravenous glucose administration.

Conclusions

These data show that plasma IL-6 concentrations did not decrease during isoglycemic, intravenous glucose administration suggesting that the markedly higher circulating insulin levels and/or gut-related factors may mediate the acute decrease in plasma IL-6 after oral glucose intake in overweight/obese subjects.

Trial Registration

Australian New Zealand Clinical Trials Registry ACTRN12612000491864  相似文献   

17.
The metabolic effects of sodium dichloroacetate in the starved rat   总被引:11,自引:10,他引:1       下载免费PDF全文
1. Sodium dichloroacetate (300mg/kg body wt. per h) was infused in 24h-starved rats for 4h. 2. Blood glucose decreased significantly, an effect that had previously only been noted in diabetic animals 3. Plasma insulin concentration decreased by 63%; blood lactate and pyruvate concentrations decreased by 50 and 33%, whereas concentrations of 3-hydroxybutyrate and acetoacetate increased by 81 and 73% respectively. 4. Livers were freeze-clamped at the end of the 4h infusion. There were significant decreases in hepatic [glucose], [glucose 6-phosphate], [2-phosphoglycerate], the [lactate]/[pyruvate] ratio, [citrate] and [malate], and also [alanine], [glutamate] and [glutamine], suggesting a diminished supply of gluconeogenic substrates. 5. Animals subjected to a functional hepatectomy at the end of 2h infusions showed no difference in blood-glucose disappearance but a highly significant decrease in the rate of accumulation of lactate, pyruvate, glycerol and alanine, compared with control animals. Dichloroacetate decreased ketone-body clearance. 6. After functional hepatectomy an increase in glutamine accumulation appeared to compensate for the decrease in alanine accumulation. 7. It is concluded that dichloroacetate causes hypoglycaemia by decreasing the net release of gluconeogenic precursors from extrahepatic tissues while inhibiting peripheral ketone-body uptake. 8. These findings are consistent with the activation of pyruvate dehydrogenase (EC 1.2.4.1) in rat muscle by dichloroacetate previously described by Whitehouse & Randle (1973).  相似文献   

18.
It is well established that subjects with liver cirrhosis are insulin resistant, but the contribution of defects in insulin secretion and/or action to glucose intolerance remains unresolved. Healthy individuals and subjects with liver cirrhosis were studied on two occasions: 1) an oral glucose tolerance test was performed, and 2) insulin secretion was inhibited and glucose was infused in a pattern and amount mimicking the systemic delivery rate of glucose after a carbohydrate meal. Insulin was concurrently infused to mimic a healthy postprandial insulin profile. Postabsorptive glucose concentrations were equal (5.36 +/- 0.12 vs. 5.40 +/- 0.25 mmol/l, P = 0.89), despite higher insulin (P < 0.01), C-peptide (P < 0.01), and free fatty acid (P = 0.05) concentrations in cirrhotic than in control subjects. Endogenous glucose release (EGR; 11.50 +/- 0.50 vs. 11.73 +/- 1.00 mumol.kg(-1).min(-1), P = 0.84) and the contribution of gluconeogenesis to EGR (6.60 +/- 0.47 vs. 6.28 +/- 0.64 mumol.kg(-1).min(-1), P = 0.70) were unaltered by cirrhosis. A minimal model recently developed for the oral glucose tolerance test demonstrated an impaired insulin sensitivity index (P < 0.05), whereas the beta-cell response to glucose was unaltered (P = 0.72). During prandial glucose and insulin infusions, the integrated glycemic response was greater in cirrhotic than in control subjects (P < 0.05). EGR decreased promptly and comparably in both groups, but glucose disappearance was insufficient at the prevailing glucose concentration (P < 0.05). Moreover, identical rates of [3-(3)H]glucose infusion produced higher tracer concentrations in cirrhotic than in control subjects (P < 0.05), implying a defect in glucose uptake. In conclusion, carbohydrate intolerance in liver cirrhosis is determined by insulin resistance and the ability of glucose to stimulate insulin secretion. During prandial glucose and insulin concentrations, EGR suppression was unaltered, but glucose uptake was impaired, which demonstrates that intolerance can be ascribed to a defect in glucose uptake, rather than abnormalities in glucose production or beta-cell function. Although insulin secretion ameliorates glucose intolerance, impaired glucose uptake during physiological glucose and insulin concentrations produces marked and sustained hyperglycemia, despite concurrent abnormalities in glucose production or insulin secretion.  相似文献   

19.
Carbohydrate metabolism by the oral bacterium Streptococcus sanguis NCTC 7865 was studied using cells grown in a chemostat at pH 7.0 under glucose or amino acid limitation (glucose excess) over a range of growth rates (D = 0.05 h-1-0.4 h-1). A mixed pattern of fermentation products was always produced although higher concentrations of lactate were formed under amino acid limitation. Analysis of culture filtrates showed that arginine was depleted from the medium under all conditions of growth; a further supplement of 10 mM-arginine was also consumed but did not affect cell yields, suggesting that it was not limiting growth. Except at the slowest growth rate (D = 0.05 h-1) under glucose limitation, the activity of the glucose phosphotransferase (PTS) system was insufficient to account for the glucose consumed during growth, emphasizing the importance of an alternative method of hexose transport in the metabolism of oral streptococci. The PTS for a number of sugars was constitutive in S. sanguis NCTC 7865 and, even though the cells were grown in the presence of glucose, the activity of the sucrose-PTS was highest. The glycolytic activity of cells harvested from the chemostat was affected by the substrate, the pH of the environment, and their original conditions of growth. Glucose-limited cells produced more acid than those grown under conditions of glucose excess; at slow growth rates, in particular, greater activities were obtained with sucrose compared with glucose or fructose. Maximum rates of glycolytic activity were obtained at pH 8.0 (except for cells grown at D = 0.4 h-1 where values were highest at pH 7.0), while slow-growing, amino acid-limited cells could not metabolize at pH 5.0. These results are discussed in terms of their possible significance in the ecology of dental plaque and the possible involvement of these bacteria in the initiation but not the clinical progression of a carious lesion.  相似文献   

20.
AT1 receptor blockers and ACE inhibitors decrease the risk for new onset diabetes mellitus. The phenomenon could be related to a direct angiotensin II effect on tissue metabolism. To address the issue, we recruited eighteen obese hypertensive patients. Patients were randomized to double-blind treatment with either valsartan (n = 8) or atenolol (n = 10) for thirteen weeks. They underwent an oral glucose tolerance test before and during active treatment, while metabolism was monitored through subcutaneous and intramuscular microdialysis and indirect calorimetry. After glucose ingestion, venous glucose and insulin concentrations increased rapidly while systemic free fatty acid concentrations were suppressed. Dialysate glucose and lactate concentrations increased briskly in adipose tissue and in skeletal muscle. Dialysate glycerol decreased profoundly in both tissues. Respiratory quotient increased markedly after glucose ingestion. These responses were identical at baseline and during active treatment either drug. We conclude that AT1 receptor blockade in obese hypertensive patients has no effect on interstitial glucose supply, lipolysis, and substrate oxidation. One possible explanation is that angiotensin II levels in obese hypertensives are not sufficient to elicit the metabolic changes that have been observed after direct angiotensin II application. The exact mechanism by which inhibition of the renin-angiotensin-aldosterone system decreases the diabetes risk remains unresolved and requires further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号